
Package: MplusAutomation (via r-universe)
September 4, 2024

Type Package

Title An R Package for Facilitating Large-Scale Latent Variable
Analyses in Mplus

Version 1.2

Date 2024-04-30

Maintainer Michael Hallquist <michael.hallquist@gmail.com>

Description Leverages the R language to automate latent variable model
estimation and interpretation using 'Mplus', a powerful latent
variable modeling program developed by Muthen and Muthen
(<https://www.statmodel.com>). Specifically, this package
provides routines for creating related groups of models,
running batches of models, and extracting and tabulating model
parameters and fit statistics.

License LGPL-3

URL https://michaelhallquist.github.io/MplusAutomation/

BugReports https://github.com/michaelhallquist/MplusAutomation/issues

Depends R (>= 3.5.0), methods

Imports utils, boot, plyr, gsubfn, coda, xtable, lattice, texreg,
pander, digest, parallel, ggplot2, data.table, fastDummies,
checkmate

Suggests rhdf5, tcltk, relimp, knitr, testthat (>= 3.0.0), rmarkdown

LazyLoad yes

LazyData yes

VignetteBuilder knitr

RoxygenNote 7.3.1

Encoding UTF-8

Config/testthat/edition 3

Repository https://michaelhallquist.r-universe.dev

RemoteUrl https://github.com/michaelhallquist/mplusautomation

RemoteRef HEAD

RemoteSha e05de897b71bf70d497f542f17eef2cace147958

1

https://www.statmodel.com
https://michaelhallquist.github.io/MplusAutomation/
https://github.com/michaelhallquist/MplusAutomation/issues

2 Contents

Contents
.mplusMultinomial . 3
cd . 4
checkSubmission . 5
coef.mplus.model . 6
compareModels . 8
confint.mplus.model . 10
createMixtures . 11
createModels . 14
createSyntax . 14
detectMplus . 15
extract . 16
get_results . 18
HTMLSummaryTable . 20
LatexSummaryTable . 22
lcademo . 23
long2LGMM . 24
lookupTech1Parameter . 27
mixtureSummaryTable . 28
mplus.traceplot . 29
MplusAutomation . 30
mplusAvailable . 32
mplusGLM . 33
mplusModel . 34
mplusModeler . 35
mplusObject . 41
mplusRcov . 44
paramExtract . 48
parseCatOutput . 49
parseMplus . 50
parseMplusSyntax . 51
plot.mplusObject . 52
plotMixtureDensities . 53
plotMixtures . 54
prepareMplusData . 56
print.MplusRstructure . 60
readModels . 61
runModels . 64
runModels_Interactive . 65
separateHyphens . 67
showSummaryTable . 67
submitModels . 69
summary.mplusObject . 72
summary.mplus_submission_df . 73
SummaryTable . 73
testBParamCompoundConstraint . 75
testBParamConstraint . 77

.mplusMultinomial 3

trainLGMM . 78
update.mplusObject . 82

Index 84

.mplusMultinomial Internal Function for Multinomial Regression in Mplus

Description

Internal Function for Multinomial Regression in Mplus

Usage

.mplusMultinomial(
dv,
iv,
data,
idvar = "",
integration = 1000,
processors = 2,
OR = TRUE,
pairwise = TRUE,
...

)

Arguments

dv A character string with the variable name for the dependent (outcome) variable.

iv A character vector with the variable name(s) for the independent (predictor/explanatory)
variable(s).

data A dataset.

idvar Optional. A character string indicating the name of the ID variable. Not cur-
rently used but may be used in future.

integration An integer indicating the number of Monte Carlo integration points to use. De-
faults to 1000.

processors An integer indicating the number of processors to use. Passed to Mplus. De-
faults to 2.

OR A logical value whether odds ratios should be returned. Defaults to TRUE.

pairwise A logical value indicating whether all pairwise tests should be computed. De-
faults to TRUE.

... Additional arguments passed to mplusModeler().

Value

A list of results and Mplus model object.

4 cd

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

Not run:

set.seed(1234)
tmpd <- data.frame(

x1 = rnorm(200),
x2 = rnorm(200),
x3 = cut(rnorm(200),

breaks = c(-Inf, -.7, .7, Inf),
labels = c("a", "b", "c")))

tmpd$y <- cut(rnorm(200, sd = 2) + tmpd$x1 + tmpd$x2 + I(tmpd$x3 == "b"),
breaks = c(-Inf, -.5, 1, Inf),
labels = c("L", "M", "H"))

tmpres <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1", "x2"),
data = tmpd,
pairwise = TRUE)

tmpres2 <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1", "x2"),
data = tmpd,
pairwise = FALSE)

tmpres3 <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1@0", "x2@0"),
data = tmpd,
pairwise = FALSE)

End(Not run)

cd Change directory

Description

The function takes a path and changes the current working directory to the path. If the directory
specified in the path does not currently exist, it will be created.

Usage

cd(base, pre, num)

checkSubmission 5

Arguments

base a character string with the base path to the directory. This is required.

pre an optional character string with the prefix to add to the base path. Non character
strings will be coerced to character class.

num an optional character string, prefixed by pre. Non character strings will be co-
erced to character class.

Details

The function has been designed to be platform independent, although it has had limited testing. Path
creation is done using file.path, the existence of the directory is checked using file.exists and
the directory created with dir.create. Only the first argument, is required. The other optional
arguments are handy when one wants to create many similar directories with a common base.

Value

NULL, changes the current working directory

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

Not run:
an example just using the base
cd("~/testdir")

an example using the optional arguments
base <- "~/testdir"
pre <- "test_"

cd(base, pre, 1)
cd(base, pre, 2)

End(Not run)

checkSubmission check on the status of submitted Mplus jobs on the cluster

Description

check on the status of submitted Mplus jobs on the cluster

Usage

checkSubmission(mplus_submission_df = NULL, quiet = FALSE)

6 coef.mplus.model

Arguments

mplus_submission_df

The data.frame returned by submitModels containing jobs to check on

quiet If TRUE, do not print out the submission data.frame with current status

Value

invisibly, the mplus_submission_df with ‘$status‘ amd ‘$status_time‘ updated

coef.mplus.model Return coefficients for an mplus.model object

Description

This is a method for returning the coefficients of an mplus.model object. It works directly on an ob-
ject stored from readModels such as: object <- readModels("/path/to/model/model.out").

Method that calls coef.mplus.model. See further documentation there.

Usage

S3 method for class 'mplus.model'
coef(
object,
type = c("un", "std", "stdy", "stdyx"),
params = c("regression", "loading", "undirected", "expectation", "variability", "new"),
...,
raw = FALSE

)

S3 method for class 'mplusObject'
coef(object, ...)

Arguments

object An object of class mplusObject

type A character vector indicating the type of coefficients to return. One of “un”,
“std”, “stdy”, or “stdyx”.

params A character vector indicating what type of parameters to extract. Any combina-
tion of “regression”, “loading”, “undirected”, “expectation”, “variability”, and
“new”. A single one can be passed or multiple. By default, all are used and all
parameters are returned.

... Additional arguments to pass on (not currently used)

raw A logical defaulting to FALSE indicating whether to parse and return coefficients
based on the type (regression, etc.) and relabel using an arrow notation, or to
return the raw coefficients in a named vector.

coef.mplus.model 7

Value

Either a data frame of class ‘mplus.model.coefs’, or in the case of multiple group models, a list of
class ‘mplus.model.coefs’, where each element of the list is a data frame of class ‘mplus.model.coefs’,
or a named vector of coefficients, if raw=TRUE.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

readModels

Other Mplus-Formatting: confint.mplus.model(), extract(), print.MplusRstructure(), summary.mplusObject()

Examples

Not run:
simple example of a model using builtin data
demonstrates use
test <- mplusObject(

TITLE = "test the MplusAutomation Package;",
MODEL = "
mpg ON wt hp;
wt WITH hp;",

OUTPUT = "STANDARDIZED;",
usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

example of the coef method on an mplud.model object
note that res$results holds the results of readModels()
coef(res$results)
coef(res$results, type = "std")
coef(res$results, type = "stdy")
coef(res$results, type = "stdyx")

there is also a method for mplusObject class
coef(res)

remove files
unlink("mtcars.dat")
unlink("model1.inp")
unlink("model1.out")
unlink("Mplus Run Models.log")

End(Not run)

8 compareModels

compareModels Compare the output of two Mplus models

Description

The compareModels function compares the output of two Mplus files and prints similarities and
differences in the model summary statistics and parameter estimates. Options are provided for
filtering out fixed parameters and nonsignificant parameters. When requested, compareModels will
compute the chi-square difference test for nested models (does not apply to MLMV, WLSM, and
WLSMV estimators, where DIFFTEST in Mplus is needed).

Usage

compareModels(
m1,
m2,
show = "all",
equalityMargin = c(param = 1e-04, pvalue = 1e-04),
compare = "unstandardized",
sort = "none",
showFixed = FALSE,
showNS = TRUE,
diffTest = FALSE

)

Arguments

m1 The first Mplus model to be compared. Generated by readModels.

m2 The second Mplus model to be compared.

show What aspects of the models should be compared. Options are "all", "sum-
maries", "equal", "diff", "pdiff", and "unique". See below for details.

equalityMargin Defines the discrepancy between models that is considered equal. Different mar-
gins can be specified for p-value equality versus parameter equality. Defaults to
.0001 for both.

compare Which parameter estimates should be compared. Options are "unstandardized",
"stdyx.standardized" "stdy.standardized", and "std.standardized".

sort How to sort the output of parameter comparisons. Options are "none", "type",
"alphabetical", and "maxDiff". See below for details.

showFixed Whether to display fixed parameters in the output (identified where the est/se =
999.000, per Mplus convention). Default to FALSE.

showNS Whether to display non-significant parameter estimates. Can be TRUE or FALSE,
or a numeric value (e.g., .10) that defines what p-value is filtered as non-significant.

diffTest Whether to compute a chi-square difference test between the models. Assumes
that the models are nested. Not available for MLMV, WLSMV, and ULSMV
estimators. Use DIFFTEST in Mplus instead.

compareModels 9

Details

Model outputs to be compared should come from the readModels command.

The show parameter can be one or more of the following, which can be passed as a vector, such as
c("equal", "pdiff").

show "all" Display all available model comparison. Equivalent to c("summaries", "equal", "diff",
"pdiff", "unique").

"summaries" Print a comparison of model summary statistics. Compares the following
summary statistics (where available): c("Title", "Observations", "Estimator", "Parame-
ters", "LL", "AIC", "BIC", "ChiSqM_Value", "ChiSqM_DF", "CFI", "TLI", "RMSEA",
"SRMR", "WRMR")

"allsummaries" Prints a comparison of all summary statistics available in each model. May
generate a lot of output.

"equal" Print parameter estimates that are equal between models (i.e., <= equalityMargin["param"]).

"diff" Print parameter estimates that are different between models (i.e., > equalityMargin["param"]).

"pdiff" Print parameter estimates where the p-values differ between models (i.e., > equalityMargin["pvalue"]).

"unique" Print parameter estimates that are unique to each model.

The sort parameter determines the order in which parameter estimates are displayed. The following
options are available:

sort "none" No sorting is performed, so parameters are output in the order presented in Mplus.
(Default)

"type" Sort parameters by their role in the model. This groups output by regression coef-
ficient (ON), factor loadings (BY), covariances (WITH), and so on. Within each type,
output is alphabetical.

"alphabetical" Sort parameters in alphabetical order.

"maxDiff" Sort parameter output by the largest differences between models (high to low).

Value

No value is returned by this function. It is used to print model differences to the R console.

Author(s)

Michael Hallquist

Examples

make me!!!

10 confint.mplus.model

confint.mplus.model Return confidence intervals for an mplus.model object

Description

This is a method for returning the confidence of an mplus.model object. It works directly on an ob-
ject stored from readModels such as: object <- readModels("/path/to/model/model.out").

Method that calls confint.mplus.model. See further documentation there.

Usage

S3 method for class 'mplus.model'
confint(
object,
parm,
level = 0.95,
type = c("un", "std", "stdy", "stdyx"),
params = c("regression", "loading", "undirected", "expectation", "variability", "new"),
...

)

S3 method for class 'mplusObject'
confint(object, ...)

Arguments

object An object of class mplusObject

parm Included as all confint() methods must include it. Not used currently for
Mplus.

level A numeric vector indicating the level of confidence interval to extract. Options
are .95, .90, or .99 as those are all Mplus provides.

type A character vector indicating the type of confidence intervals to return. One of
“un”, “std”, “stdy”, or “stdyx”.

params A character vector indicating what type of parameters to extract. Any combina-
tion of “regression”, “loading”, “undirected”, “expectation”, “variability”, and
“new”. A single one can be passed or multiple. By default, all are used and all
parameters are returned.

... Additional arguments to pass on (not currently used)

Value

A data frame of class ‘mplus.model.cis’, or in the case of multiple group models, a list of class
‘mplus.model.cis’, where each element of the list is a data frame of class ‘mplus.model.cis’.

createMixtures 11

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

readModels

Other Mplus-Formatting: coef.mplus.model(), extract(), print.MplusRstructure(), summary.mplusObject()

Examples

Not run:
simple example of a model using builtin data
demonstrates use
test <- mplusObject(

TITLE = "test the MplusAutomation Package;",
MODEL = "
mpg ON wt hp;
wt WITH hp;",

OUTPUT = "STANDARDIZED; CINTERVAL;",
usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

example of the confint method on an mplus.model object
note that res$results holds the results of readModels()
confint(res$results)
confint(res$results, type = "std")
confint(res$results, type = "stdy")
confint(res$results, type = "stdyx", level = .99)

there is also a method for mplusObject class
confint(res)
screenreg(res, cis = TRUE, single.row = TRUE)

remove files
unlink("mtcars.dat")
unlink("model1.inp")
unlink("model1.out")
unlink("Mplus Run Models.log")

End(Not run)

createMixtures Create syntax for a batch of mixture models

12 createMixtures

Description

Dynamically creates syntax for a batch of mixture models, with intelligent defaults. This function is
a wrapper around mplusObject and mplusModeler, and the respective arguments of those functions
can be passed on using For instance, passing the argument run = 1L means that the models
will be evaluated and returned.

Usage

createMixtures(
classes = 1L,
filename_stem = NULL,
model_overall = NULL,
model_class_specific = NULL,
rdata = NULL,
usevariables = NULL,
OUTPUT = "TECH11 TECH14;",
SAVEDATA = "FILE IS {filename_stem}_{C}.dat; SAVE = cprobabilities;",
quiet = TRUE,
...

)

Arguments

classes A vector of integers, indicating which class solutions to generate. Defaults to
1L. E.g., classes = 1:6, classes = c(1:4, 6:8).

filename_stem Character. A stem for the automatically generated filenames of the syntax and
data files.

model_overall Character. Mplus syntax for the overall model (across classes).
model_class_specific

Character vector. Mplus syntax for the class-specific model(s) of one or more
categorical latent variables. Each element of model_class_specific is used
as the class-specific syntax of a different categorical latent variable. This allows
one to easily specify latent transition analyses (see second example). The char-
acter string “{C}” is substituted with the correct class number, for example to
set unique parameter labels for each class, or to specify equality constraints.

rdata Data.frame. An R dataset to be used for the model.

usevariables Character vector, specifying the names of variables in the rdata object which
should be included in the Mplus data file and model.

OUTPUT Character. Syntax for Mplus’ OUTPUT option. Highly recommended when
determining the appropriate number of latent classes. TECH11 is required to
obtain the VLMR-test; TECH14 is required for the BLR-test.

SAVEDATA Character. Syntax for Mplus’ savedata option. Highly recommended when con-
ducting mixture models. The default option will often be adequate.

quiet optional. If TRUE, show status messages in the console.

... Additional arguments, passed to mplusObject, such as syntax for other Mplus
options.

createMixtures 13

Details

In the arguments model_class_specific and SAVEDATA, the character string “{C}” is substituted
with the correct class number. The character string “{filename_stem}” is substituted with the file-
name stem, for example, to name savedata in line with the input files.

In all arguments to mplusObject, a double space (“ ”) is replaced with a newline character. This
can be used to obtain nicely formatted Mplus syntax.

Value

None, unless the argument run = 1L is specified. In that case, a list with elements of class mplusObject
is returned. Otherwise, this function is used for its side effects (generating syntax).

Author(s)

Caspar J. van Lissa

See Also

mplusObject, mplusModeler

Examples

Not run:
createMixtures(classes = 1:3, filename_stem = "iris", rdata = iris)

End(Not run)
Not run:
mydat <- read.csv(
system.file("extdata", "ex8.13.csv", package = "MplusAutomation"))
createMixtures(
classes = 2,
filename_stem = "dating",
model_overall = "c2 ON c1;",
model_class_specific = c(
"[u11$1] (a{C}); [u12$1] (b{C}); [u13$1] (c{C}); [u14$1] (d{C}); [u15$1] (e{C});",
"[u21$1] (a{C}); [u22$1] (b{C}); [u23$1] (c{C}); [u24$1] (d{C}); [u25$1] (e{C});"
),
rdata = mydat,
ANALYSIS = "PROCESSORS IS 2; LRTSTARTS (0 0 40 20); PARAMETERIZATION = PROBABILITY;",
VARIABLE = "CATEGORICAL = u11-u15 u21-u25;"
)

End(Not run)

14 createSyntax

createModels Create Mplus Input Files from Template

Description

The createModels function processes a single Mplus template file and creates a group of re-
lated model input files. Definitions and examples for the template language are provided in the
MplusAutomation vignette and are not duplicated here at the moment. See this documentation:
vignette("Vignette", package="MplusAutomation")

Usage

createModels(templatefile)

Arguments

templatefile The filename (absolute or relative path) of an Mplus template file to be pro-
cessed. Example “C:/MplusTemplate.txt”

Value

No value is returned by this function. It is solely used to process an Mplus template file.

Author(s)

Michael Hallquist

Examples

Not run:
createModels("L2 Multimodel Template No iter.txt")

End(Not run)

createSyntax Create the Mplus input text for an mplusObject

Description

This function takes an object of class mplusObject and creates the Mplus input text corresponding
to it, including data link and variable names.

Usage

createSyntax(object, filename, check = TRUE, add = FALSE, imputed = FALSE)

detectMplus 15

Arguments

object An object of class mplusObject

filename The name of the data file as a character vector

check A logical indicating whether or not to run parseMplus on the created input file.
Checks for errors like lines that are too long, or for missing semi-colons and
gives notes.

add A logical passed on to parseMplus whether to add semi colons to line ends.
Defaults to FALSE.

imputed A logical whether the data are multiply imputed. Defaults to FALSE.

Value

A character string containing all the text for the Mplus input file.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

prepareMplusData, mplusModeler

Examples

example mplusObject
example1 <- mplusObject(MODEL = "mpg ON wt;",

usevariables = c("mpg", "hp"), rdata = mtcars)

create the Mplus input text
cat(createSyntax(example1, "example1.dat"), file=stdout(), fill=TRUE)

update the object, then create input text
cat(createSyntax(update(example1,

TITLE = ~ "This is my title;",
MODEL = ~ . + "\nmpg ON hp;",
usevariables = c("mpg", "hp", "wt")), "example1.dat"),
file=stdout(),
fill=TRUE)

rm(example1)

detectMplus Detect the location/name of the Mplus command

Description

This is an utility function to help detect the correct name/path to Mplus. It tries hard across operating
systems to find Mplus and if it cannot find the full version of Mplus to find a demo version of Mplus.

16 extract

Usage

detectMplus()

Details

It does not require any arguments.

Value

A character string that is the Mplus command possibly the path to the mplus command or an error
if it cannot be found.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

if you have Mplus installed, uncomment and run
this will give an error if it cannot find Mplus.
detectMplus()

extract Extract function to make Mplus output work with the texreg package

Description

This is a method for extracting output in a format suitable for the texreg package. Uses coef for
most the work.

Usage

extract.mplus.model(
model,
summaries = "none",
cis = FALSE,
escape.latex = FALSE,
...

)

extract.mplusObject(model, summaries = "none", cis = FALSE, ...)

S4 method for signature 'mplus.model'
extract(model, summaries = "none", cis = FALSE, escape.latex = FALSE, ...)

S4 method for signature 'mplusObject'
extract(model, summaries = "none", cis = FALSE, ...)

extract 17

Arguments

model An Mplus model object. This typically comes either from readModels directly,
or indirectly via mplusModeler. The results will have different classes, but
extract methods are defined for both.

summaries A character vector which summaries to include. Defaults to “none”.

cis A logical whether to extract confidence intervals.

escape.latex A logical value whether to escape dollar signs in coefficient names for LaTeX.
Defaults to FALSE.

... Additional arguments passed to coef.mplus.model.

Value

A texreg object, or for multiple group models, a list of texreg objects.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

readModels

Other Mplus-Formatting: coef.mplus.model(), confint.mplus.model(), print.MplusRstructure(),
summary.mplusObject()

Examples

Not run:
simple example of a model using builtin data
demonstrates use
test <- mplusObject(

TITLE = "test the MplusAutomation Package;",
MODEL = "
mpg ON wt hp;
wt WITH hp;",

OUTPUT = "STANDARDIZED;",
usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

extract(res$results)
there is also a method for mplusObject class
extract(res)

load the texreg package
to use pretty printing via screenreg
uncomment to run these examples
library(texreg)
screenreg(res)

18 get_results

screenreg(res, type = 'stdyx')

screenreg(res, type = 'un', params = 'regression',
single.row=TRUE)
screenreg(res, type = 'un', params = 'regression', summaries = 'CFI',
single.row=TRUE)

remove files
unlink("mtcars.dat")
unlink("model1.inp")
unlink("model1.out")
unlink("Mplus Run Models.log")

End(Not run)

get_results Extract Mplus results

Description

This function allows users to extract elements of Mplus output by name from different types of
objects returned by MplusAutomation.

Usage

get_results(x, element, simplify = FALSE, ...)

get_input(x, simplify = FALSE, ...)

get_warn_err(x, simplify = FALSE, ...)

get_data_summary(x, simplify = FALSE, ...)

get_sampstat(x, simplify = FALSE, ...)

get_covariance_coverage(x, simplify = FALSE, ...)

get_summaries(x, simplify = FALSE, ...)

get_invariance_testing(x, simplify = FALSE, ...)

get_parameters(x, simplify = FALSE, ...)

get_class_counts(x, simplify = FALSE, ...)

get_indirect(x, simplify = FALSE, ...)

get_mod_indices(x, simplify = FALSE, ...)

get_results 19

get_residuals(x, simplify = FALSE, ...)

get_savedata(x, simplify = FALSE, ...)

get_bparameters(x, simplify = FALSE, ...)

get_tech1(x, simplify = FALSE, ...)

get_tech3(x, simplify = FALSE, ...)

get_tech4(x, simplify = FALSE, ...)

get_tech7(x, simplify = FALSE, ...)

get_tech8(x, simplify = FALSE, ...)

get_tech9(x, simplify = FALSE, ...)

get_tech10(x, simplify = FALSE, ...)

get_tech12(x, simplify = FALSE, ...)

get_tech15(x, simplify = FALSE, ...)

get_fac_score_stats(x, simplify = FALSE, ...)

get_lcCondMeans(x, simplify = FALSE, ...)

get_gh5(x, simplify = FALSE, ...)

Arguments

x Object from which to extract results.
element Which element of the results to extract.
simplify Logical; should the result be simplified to a vector, matrix or higher dimensional

array if possible? See sapply. Defaults to FALSE.
... Additional arguments passed to and from functions.

Value

An atomic vector or matrix or list of the same length as X (of length n for replicate). If simplification
occurs, the output type is determined from the highest type of the return values in the hierarchy
NULL < raw < logical < integer < double < complex < character < list < expression, after coercion
of pairlists to lists.

Examples

Not run:

20 HTMLSummaryTable

test <- mplusObject(MODEL = "mpg ON wt hp;
wt WITH hp;", rdata = mtcars)
res <- mplusModeler(test, modelout = "model1.inp", run = 1L)
get_results(res, "summaries")
unlink(res$results$input$data$file)
unlink("model1.inp")
unlink("model1.out")

End(Not run)
out <- get_input(res)
out <- get_warn_err(res)
out <- get_data_summary(res)
out <- get_sampstat(res)
out <- get_covariance_coverage(res)
out <- get_summaries(res)
out <- get_invariance_testing(res)
out <- get_parameters(res)
out <- get_class_counts(res)
out <- get_indirect(res)
out <- get_mod_indices(res)
out <- get_residuals(res)
out <- get_savedata(res)
out <- get_bparameters(res)
out <- get_tech1(res)
out <- get_tech3(res)
out <- get_tech4(res)
out <- get_tech7(res)
out <- get_tech8(res)
out <- get_tech9(res)
out <- get_tech10(res)
out <- get_tech12(res)
out <- get_tech15(res)
out <- get_fac_score_stats(res)
out <- get_lcCondMeans(res)
out <- get_gh5(res)

HTMLSummaryTable Create an HTML file containing a summary table of Mplus model
statistics

Description

Creates an HTML file containing a summary table of model fit statistics extracted using the extractModelSummaries
function. By default, the following summary statistics are included: Title, LL, Parameters,
AIC, AICC, BIC, RMSEA_Estimate, but these are customizable using the keepCols and dropCols
parameters.

Usage

HTMLSummaryTable(

HTMLSummaryTable 21

modelList,
filename = file.path(getwd(), "Model Comparison.html"),
keepCols,
dropCols,
sortBy = NULL,
display = FALSE

)

Arguments

modelList A list of models (as a data.frame) returned from the extractModelSummaries
function.

filename The name of the HTML file to be created. Can be an absolute or relative path.
If filename is a relative path or just the filename, then it is assumed that the file
resides in the working directory getwd(). Example: "Mplus Summary.html"

keepCols A vector of character strings indicating which columns/variables to display in
the summary. Only columns included in this list will be displayed (all others ex-
cluded). By default, keepCols is: c("Title", "LL", "Parameters", "AIC",
"AICC", "BIC", "RMSEA_Estimate"). Example: c("Title", "LL", "AIC",
"CFI")

dropCols A vector of character strings indicating which columns/variables to omit from
the summary. Any column not included in this list will be displayed. By default,
dropCols is NULL. Example: c("InputInstructions", "TLI")

sortBy optional. Field name (as character string) by which to sort the table. Typically
an information criterion (e.g., "AIC" or "BIC") is used to sort the table. Defaults
to NULL, which does not sort the table.

display optional. This parameter specifies whether to display the table in a web browser
upon creation (TRUE or FALSE).

Value

No value is returned by this function. It is solely used to create an HTML file containing summary
statistics.

Note

You must choose between keepCols and dropCols because it is not sensible to use these together
to include and exclude columns. The function will error if you include both parameters.

Author(s)

Michael Hallquist

See Also

extractModelSummaries, showSummaryTable, LatexSummaryTable

22 LatexSummaryTable

Examples

make me!!!

LatexSummaryTable Display summary table of Mplus model statistics in separate window

Description

Creates a LaTex-formatted summary table of model fit statistics extracted using the extractModelSummaries
function. The table syntax is returned by the function, which is useful for embedding LaTex tables
using Sweave. By default, the following summary statistics are included: Title, LL, Parameters,
AIC, AICC, BIC, RMSEA_Estimate, but these are customizable using the keepCols and dropCols
parameters.

Usage

LatexSummaryTable(
modelList,
keepCols,
dropCols,
sortBy = NULL,
label = NULL,
caption = NULL

)

Arguments

modelList A list of models (as a data.frame) returned from the extractModelSummaries
function.

keepCols A vector of character strings indicating which columns/variables to display in
the summary. Only columns included in this list will be displayed (all others ex-
cluded). By default, keepCols is: c("Title", "LL", "Parameters", "AIC",
"AICC", "BIC", "RMSEA_Estimate"). Example: c("Title", "LL", "AIC",
"CFI")

dropCols A vector of character strings indicating which columns/variables to omit from
the summary. Any column not included in this list will be displayed. By default,
dropCols is NULL. Example: c("InputInstructions", "TLI")

sortBy optional. Field name (as character string) by which to sort the table. Typically
an information criterion (e.g., "AIC" or "BIC") is used to sort the table. Defaults
to NULL, which does not sort the table.

label optional. A character string specifying the label for the LaTex table, which can
be used for referencing the table.

caption optional. A character string specifying the caption for the LaTex table.

lcademo 23

Value

A LaTex-formatted table summarizing the modelList is returned (created by xtable).

Note

You must choose between keepCols and dropCols because it is not sensible to use these together
to include and exclude columns. The function will error if you include both parameters.

Author(s)

Michael Hallquist

See Also

extractModelSummaries, HTMLSummaryTable, showSummaryTable, Sweave

Examples

make me!!!

lcademo Latent Class Analysis Demonstration

Description

A list containing the Mplus Data, Output Files, and GH5 Files for a demonstration of using MplusAutoma-
tion for latent class analysis. Generated by the vignette on latent class analysis.

Usage

lcademo

Format

A list containing 11 elements.

Data 2 Class LCA data simulated using Mplus
CFA Mplus output file for CFA
LCA2 Mplus output file for 2 class LCA
LCA3 Mplus output file for 3 class LCA
LCA4 Mplus output file for 4 class LCA
LCA5 Mplus output file for 5 class LCA
CFAGH5 GH5 file for CFA
LCA2GH5 GH5 file for 2 class LCA
LCA3GH5 GH5 file for 3 class LCA
LCA4GH5 GH5 file for 4 class LCA
LCA5GH5 GH5 file for 5 class LCA

24 long2LGMM

long2LGMM Long data to wide latent growth mixture model

Description

This function streamlines the process of converting long data into a format that Mplus can use for
latent growth mixture models in wide form. It makes use of continuous time scores, and these time
scores must be supplied as variables in the R dataset. For the conversion to wide form, it is assumed
that although assessments may have happened in continuous time, a discrete number of assessments
(likely ismilar for all participants) were collected.

Usage

long2LGMM(
data,
idvar,
assessmentvar,
dv,
timevars,
misstrick = TRUE,
k = 1L,
title = "Trajectory Model",
base = "trajmodel_",
run = FALSE,
processors = 1L,
starts = "500 100",
newdata,
cov = c("un", "independent", "intercept", "zero"),
model

)

Arguments

data A data frame in long format (i.e., multiple rows per ID).

idvar A character string of the variable name in the dataset that is the ID variable.

assessmentvar A character string of the variable name in the dataset that indicates the particular
assessment point for each timepoint.

dv A character string of the dependent variable name.

timevars A character vector of the time variables. Can be a single variable or more than
one. By allowing more than one variable, it is easy to include linear; linear
and quadratic; it is also possible to calculate splines in R and pass these. The
variable names should be 7 characters or fewer, each.

misstrick A logical value whether to set values of the DV where a time variable is missing
to missing as well. Defaults to TRUE.

k An integer indicating the number of distinct classes to test. Currently must be
greater than 0 and less than 10.

long2LGMM 25

title A character string giving a title for the model

base A character string providing a base name for model outputs, that is combined
with the number of classes.

run A logical value whether or not to run the models or only create the data and
input files, but not run them.

processors An integer value indicating the number of processors to use.

starts A character string passed to Mplus providing the number of random starts and
iterations

newdata A data frame of new values to use for generating predicted trajectories by class.

cov A character string indicating the random covariance structure to use

model An optional argument, can pass an existing model, the output from mplusMod-
eler().

Details

One valuable feature of this function is that it makes it possible to feed any continuous time scores
to Mplus for mixture modelling. For example, continuous linear time is straightforward, but so
to are quadratic time models or piecewise models. Using facilities in R, spline models are also
comparatively easy to specify.

Examples

Not run:
Simulate Some Data from 3 classes
library(MASS)
set.seed(1234)
allcoef <- rbind(

cbind(1, mvrnorm(n = 200,
mu = c(0, 2, 0),
Sigma = diag(c(.2, .1, .01)),
empirical = TRUE)),

cbind(2, mvrnorm(n = 200,
mu = c(-3.35, 2, 2),
Sigma = diag(c(.2, .1, .1)),
empirical = TRUE)),

cbind(3, mvrnorm(n = 200,
mu = c(3.35, 2, -2),
Sigma = diag(c(.2, .1, .1)),
empirical = TRUE)))

allcoef <- as.data.frame(allcoef)
names(allcoef) <- c("Class", "I", "L", "Q")
allcoef$ID <- 1:nrow(allcoef)
d <- do.call(rbind, lapply(1:nrow(allcoef), function(i) {

out <- data.frame(
ID = allcoef$ID[i],
Class = allcoef$Class[i],
Assess = 1:11,
x = sort(runif(n = 11, min = -2, max = 2)))

out$y <- rnorm(11,

26 long2LGMM

mean = allcoef$I[i] + allcoef$L[i] * out$x + allcoef$Q[i] * out$x^2,
sd = .1)

return(out)
}))

create splines
library(splines)
time_splines <- ns(d$x, df = 3, Boundary.knots = quantile(d$x, probs = c(.02, .98)))
d$t1 <- time_splines[, 1]
d$t2 <- time_splines[, 2]
d$t3 <- time_splines[, 3]
d$xq <- d$x^2

create new data to be used for predictions
nd <- data.frame(ID = 1,

x = seq(from = -2, to = 2, by = .1))
nd.splines <- with(attributes(time_splines),

ns(nd$x, df = degree, knots = knots,
Boundary.knots = Boundary.knots))

nd$t1 <- nd.splines[, 1]
nd$t2 <- nd.splines[, 2]
nd$t3 <- nd.splines[, 3]
nd$xq <- nd$x^2

create a tuning grid of models to try
all possible combinations are created of different time trends
different covariance structures of the random effects
and different number of classes
tuneGrid <- expand.grid(

dv = "y",
timevars = list(c("t1", "t2", "t3"), "x", c("x", "xq")),
starts = "2 1",
cov = c("independent", "zero"),
k = c(1L, 3L),
processors = 1L, run = TRUE,
misstrick = TRUE, stringsAsFactors = FALSE)

tuneGrid$title <- paste0(
c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
"_",
sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)),
"_",
tuneGrid$k)

tuneGrid$base <- paste0(
c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
"_",
sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)))

example using long2LGMM to fit one model at a time
mres <- long2LGMM(

data = d,
idvar = "ID",
assessmentvar = "Assess",
dv = tuneGrid$dv[1],

lookupTech1Parameter 27

timevars = tuneGrid$timevars[[1]],
misstrick = tuneGrid$misstrick[1],
k = tuneGrid$k[1],
title = paste0(tuneGrid$title[1], tuneGrid$k[1]),
base = tuneGrid$base[1],
run = tuneGrid$run[1],
processors = tuneGrid$processors[1],
starts = tuneGrid$starts[1],
newdata = nd,
cov = tuneGrid$cov[1])

rm(mres)

End(Not run)

lookupTech1Parameter Lookup the matrix element for a give parameter number

Description

The lookupTech1Parameter function identifies the position in the Mplus model matrices corre-
sponding to a given parameter defined in the TECHNICAL 1 PARAMETER SPECIFICATION
OUTPUT. The goal of this function is to aid in identifying problematic parameters often printed in
the warnings and errors section of Mplus output.

Usage

lookupTech1Parameter(tech1Output, paramNumber)

Arguments

tech1Output The object corresponding to the TECH1 parameter specification from readMod-
els.

paramNumber The parameter number to lookup

Value

A data.frame containing the row(s) and column(s) of TECH1 parameter specification matching
the requested paramNumber.

Author(s)

Michael Hallquist

See Also

readModels

28 mixtureSummaryTable

Examples

Not run:
models <- readModels("test1.out")
param <- lookupTech1Parameter(models$tech1, 16)

End(Not run)

mixtureSummaryTable Create a summary table of Mplus mixture models

Description

Creates a summary table of model fit statistics and relevant diagnostic information for a list of
mixture models. Default statistics reported are in line with published guidelines (see Jung &
Wickrama, 2008; Nylund et al., 2007): c("Title", "Classes", "Warnings", "AIC", "BIC",
"aBIC","Entropy", "T11_VLMR_PValue", "T11_LMR_PValue", "BLRT_PValue", "min_N","max_N",
"min_prob", "max_prob"). The table is customizable using the keepCols parameter, which is
passed through to SummaryTable.

Usage

mixtureSummaryTable(
modelList,
keepCols = c("Title", "Classes", "Warnings", "AIC", "BIC", "aBIC", "Entropy",
"T11_VLMR_PValue", "T11_LMR_PValue", "BLRT_PValue", "min_N", "max_N", "min_prob",
"max_prob"),

sortBy = NULL,
...

)

Arguments

modelList A list of models returned from the extractModelSummaries function.

keepCols A vector of character strings indicating which columns/variables to display in
the summary. Only columns included in this list will be displayed (all others
excluded). By default, keepCols is: c("Title", "Classes", "Warnings",
"AIC", "BIC", "aBIC","Entropy","T11_VLMR_PValue", "T11_LMR_PValue",
"BLRT_PValue", "min_N", "max_N","min_prob", "max_prob").

sortBy Field name (as character string) by which to sort the table. Typically an infor-
mation criterion (e.g., "AIC" or "BIC") is used to sort the table. Defaults to
"AICC". Set to NULL by default, so the table is ordered by increasing number
of classes.

... Arguments passed to SummaryTable.

Value

An object of class data.frame.

mplus.traceplot 29

Note

This function is partially a wrapper around SummaryTable, with enhancements for summarizing
mixture models.

Author(s)

Caspar J. van Lissa

See Also

SummaryTable

Examples

Not run:
res <- createMixtures(classes = 1:2, filename_stem = "iris", rdata = iris,

OUTPUT = "tech11 tech14;",
run = 1L)

mixtureSummaryTable(res)

End(Not run)

mplus.traceplot Plot the samples for each MCMC chain as a function of iterations

Description

Displays a traceplot of the MCMC draws from the poster distribution of each parameter estimate
for a Bayesian Mplus model. This function requires that 1) PLOT: TYPE=PLOT2; be included in
the Mplus input file, 2) a gh5 file be present corresponding to the Mplus output file (and containing
a bayesian_data section), and 3) that the rhdf5 package be installed to allow the gh5 file to be
imported.

Usage

mplus.traceplot(mplus.model, rows = 4, cols = 4, parameters_only = TRUE)

Arguments

mplus.model An Mplus model extracted by the readModels function.

rows Number of rows to display per plot.

cols Optional. Number of columns to display per plot.
parameters_only

Optional. If TRUE, only the unstandardized parameter estimates from the MCMC
draws will be displayed (as opposed to standardized estimates, r-square esti-
mates, etc.). The unstandardized estimates all begin with "Parameter" in the
Mplus gh5 output.

30 MplusAutomation

Details

A multi-panel plot is drawn to the screen and the user is prompted to display the next plot if more
than rows x columns estimates are in the model.

Value

No value is returned by this function. Called for the side effect of displaying an MCMC chains
traceplot.

Note

Trace and density plots can also be obtained using the coda package and the bparameters element
of the mplus.model object. This requires that the posterior draws be saved using SAVEDATA:
BPARAMETERS syntax. See example below.

Author(s)

Joseph Glass, Michael Hallquist

See Also

plot.mcmc

Examples

Not run:
myModel <- readModels("BayesModel_WithGH5MCMC.out")
mplus.traceplot(myModel, rows=2, cols=3)

#alternative using the coda package
library(coda)
plot(myModel$bparameters$valid_draw)

End(Not run)

MplusAutomation Automating Mplus Model Estimation and Interpretation

Description

The MplusAutomation package leverages the flexibility of the R language to automate latent vari-
able model estimation and interpretation using ’Mplus’, a powerful latent variable modeling pro-
gram developed by Muthen and Muthen (http://www.statmodel.com). Specifically, MplusAutoma-
tion provides routines for creating related groups of models, running batches of models, and extract-
ing and tabulating model parameters and fit statistics.

http://www.statmodel.com

MplusAutomation 31

Details

The MplusAutomation package has four primary purposes:

1. To automatically run groups/batches of models.

2. To provide routines to extract model fit statistics, parameter estimates, and raw data from
’Mplus’ output files.

3. To facilitate comparisons among models

4. To provide a template language that allows for the creation of related input files.

The core routine for running batches of models is runModels, with an easy-to-use GUI wrapper,
runModels_Interactive.

The core routine for extracting information from ’Mplus’ outputs is readModels, which returns a
list containing all output sections that the package can extract.

To extract summaries, parameters, modification indices, SAVEDATA output, and all other sections
that the package can understand, use the readModels function. This is the recommended way to
extract ’Mplus’ output with this package. If the target argument to readModels is a single .out
file, an mplus.model (that is also a list) will be returned containing all output sections that the
package can extract. If target is a directory, a list of mplus.model objects will be returned, named
according to the output filenames.

Note: extractModelSummaries is deprecated and readModels should be preferred. To extract
model summary statistics from one or more output files, see extractModelSummaries, which re-
turns a data.frame of fit statistics for models located within a directory. Model fit results can
be summarized in tabular form (for comparing among models) using showSummaryTable (displays
table in separate window), HTMLSummaryTable (creates HTML file containing summary table), or
LatexSummaryTable (returns a LaTex-formatted table of summary statistics).

Detailed model fit and parameter comparisons between two models can be obtained using compareModels.

To create a group of related models from a single template, see createModels. Please read the
MplusAutomation vignette provided along with the package (and on the CRAN website) in order
to understand the template language: vignette("Vignette", package="MplusAutomation").

In addition to the major functions above, a function for converting an R data.frame for use with
’Mplus’ is provided: prepareMplusData. This converts the data.frame to a tab-delimited file and
provides an ’Mplus’ syntax stub for variable names.

Package: MplusAutomation
Type: Package
Version: 1.2
Date: 2024-05-16
License: LGPL-3
LazyLoad: yes

Author(s)

Michael Hallquist <michael.hallquist@gmail.com>, Joshua F. Wiley <jwiley.psych@gmail.com>

Maintainer: Michael Hallquist <michael.hallquist@gmail.com>

32 mplusAvailable

References

Mplus software. Muthen and Muthen. http://www.statmodel.com

See Also

See runModels for an example running a model.

mplusAvailable Check whether Mplus can be found

Description

This is a simple utility to check whether Mplus can be found. Returns 0 if Mplus command can be
found by the system. If silent = FALSE, prints a message to the user to help suggest what to do.

Usage

mplusAvailable(silent = TRUE)

Arguments

silent A logical whether to print a message or not. Defaults to TRUE for silent opera-
tion.

Value

The status of finding Mplus. Per unix conventions, status 0 indicates Mplus was found (0 problems)
and status 1 indicates that Mplus was not found.

Author(s)

Joshua Wiley

Examples

mplusAvailable(silent = TRUE)
mplusAvailable(silent = FALSE)

http://www.statmodel.com

mplusGLM 33

mplusGLM Function to fit GLMs in Mplus

Description

The purpose of this function is to make it (relatively) easy to fit (most) generalized linear models
in Mplus. Fitting GLMs in Mplus offers advantages such as using full information maximum like-
lihood for missing data, robust estimators (default used is MLR), and standard errors adjusted for
clustering (planned; not currently available via mplusGLM(). The overarching aim of this function
is to make most GLMs as easy to fit in Mplus as they are in R.

Usage

mplusGLM(formula, data, idvar = "", ...)

Arguments

formula An R formula class object as used in glm(). Note that currently, only basic
formula are accepted. On the fly recoding, arthimetic, and on the fly interactions
do not currently work.

data A dataset.

idvar Optional. A character string indicating the name of the ID variable. Not cur-
rently used but may be used in future.

... Additional arguments passed to helper functions. For example .mplusMultinomial().

Details

Note that although there are benefits to fitting GLMs in Mplus. Caution also is warranted. Using
full information maximum likelihood for missing data requires a number of assumptions. These
may be (badly) violated. mplusGLM() requires the analyst to check these as appropriate.

Currently, mplusGLM() only supports multinomial outcomes. More outcomes are planned in the
future including binary, continuous/normal, and count outcomes.

Value

A list of results and Mplus model object.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

34 mplusModel

Examples

Not run:
set.seed(1234)
tmpd <- data.frame(

x1 = rnorm(200),
x2 = rnorm(200),
x3 = cut(rnorm(200),

breaks = c(-Inf, -.7, .7, Inf),
labels = c("a", "b", "c")))

tmpd$y <- cut(rnorm(200, sd = 2) + tmpd$x1 + tmpd$x2 + I(tmpd$x3 == "b"),
breaks = c(-Inf, -.5, 1, Inf),
labels = c("L", "M", "H"))

test <- mplusGLM(y ~ x1 + x2 + x3, data = tmpd)

End(Not run)

mplusModel Create an mplusModel object for a given model

Description

Create an mplusModel object for a given model

Usage

mplusModel(syntax = NULL, data = NULL, inp_file = NULL, read = TRUE)

Arguments

syntax a character vector of Mplus input syntax for this model

data a data.frame to be used for estimating the model

inp_file the location of .inp file for this model

read If TRUE and the .out file already exists, read the contents of the .out file using
‘readModels‘

Value

a ‘mplusModel_r6‘ object containing information about the model

mplusModeler 35

mplusModeler Create, run, and read Mplus models.

Description

This is a convenience wrapper to automate many of the usual steps required to run an Mplus model.
It relies in part on functions from the MplusAutomation package.

Usage

mplusModeler(
object,
dataout,
modelout,
run = 0L,
check = FALSE,
varwarnings = TRUE,
Mplus_command = detectMplus(),
writeData = c("ifmissing", "always", "never"),
hashfilename = TRUE,
killOnFail = TRUE,
quiet = TRUE,
...

)

Arguments

object An object of class mplusObject

dataout the name of the file to output the data to for Mplus. If missing, defaults to
modelout changing .inp to .dat.

modelout the name of the output file for the model. This is the file all the syntax is written
to, which becomes the Mplus input file. It should end in .inp. If missing, defaults
to dataout changing the extension to .inp.

run an integer indicating how many models should be run. Defaults to zero. If zero,
the data and model input files are all created, but the model is not run. This
can be useful for seeing how the function works and what setup is done. If one,
a basic model is run. If greater than one, the model is bootstrapped with run
replications as well as the basic model.

check logical whether the body of the Mplus syntax should be checked for missing
semicolons using the parseMplus function. Defaults to FALSE.

varwarnings A logical whether warnings about variable length should be left, the default, or
removed from the output file.

Mplus_command optional. N.B.: No need to pass this parameter for most users (has intelligent
defaults). Allows the user to specify the name/path of the Mplus executable
to be used for running models. This covers situations where Mplus is not in

36 mplusModeler

the system’s path, or where one wants to test different versions of the Mplus
program.

writeData A character vector, one of ‘ifmissing’, ‘always’, ‘never’ indicating whether the
data files (*.dat) should be written to disk. This is passed on to prepareMplusData.
Note that previously, mplusModeler always (re)wrote the data to disk. However,
now the default is to write the data to disk only if it is missing (i.e., ‘ifmissing’).
See details for further information.

hashfilename A logical whether or not to add a hash of the raw data to the data file name.
Defaults to TRUE in mplusModeler. Note that this behavior is a change from
previous versions and differs from prepareMplusData which maintains the old
behavior by default of FALSE.

killOnFail A logical whether or not to kill any mplus processes on failure. Passed on to
control behavior of runModels. Defaults to TRUE.

quiet optional. If TRUE, show status messages in the console.

... additional arguments passed to the prepareMplusData function.

Details

Combined with functions from the MplusAutomation package, this function is designed to make
it easy to fit Mplus models from R and to ease many of the usual frustrations with Mplus. For
example, Mplus has very specific formats it accepts data in, but also very little data management
facilities. Using R data management is easy. This function is designed to make using data from R in
Mplus models easy. It is also common to want to fit many different models that are slight variants.
This can be tedius in Mplus, but using R you can create one basic set of input, store it in a vector,
and then just modify that (e.g., using regular expressions) and pass it to Mplus. You can even use
loops or the *apply constructs to fit the same sort of model with little variants.

The writeData argument is new and can be used to reduce overhead from repeatedly writing the
same data from R to the disk. When using the ‘always’ option, mplusModeler behaves as before,
always writing data from R to the disk. This remains the default for the prepareMplusData function
to avoid confusion or breaking old code. However, for mplusModeler, the default has been set to
‘ifmissing’. In this case, R generates an md5 hash of the data prior to writing it out to the disk.
The md5 hash is based on: (1) the dimensions of the dataset, (2) the variable names, (3) the class
of every variable, and (4) the raw data from the first and last rows. This combination ensures that
under most all circumstances, if the data changes, the hash will change. The hash is appended to
the specified data file name (which is controlled by the logical hashfilename argument). Next
R checks in the directory where the data would normally be written. If a data file exists in that
directory that matches the hash generated from the data, R will use that existing data file instead of
writing out the data again. A final option is ‘never’. If this option is used, R will not write the data
out even if no file matching the hash is found.

Value

An Mplus model object, with results. If run = 1, returns an invisible list of results from the run of
the Mplus model (see readModels from the MplusAutomation package). If run = 0, the function
returns a list with two elements, ‘model’ and ‘boot’ that are both NULL. if run >= 1,returns a list with
two elements, ‘model’ and ‘boot’ containing the regular Mplus model output and the boot object,
respectively. In all cases, the Mplus data file and input files are created.

mplusModeler 37

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

runModels and readModels

Examples

Not run:
minimal example of a model using builtin data, allowing R
to automatically guess the correct variables to use
test <- mplusObject(MODEL = "mpg ON wt hp;

wt WITH hp;", rdata = mtcars)

estimate the model in Mplus and read results back into R
res <- mplusModeler(test, modelout = "model1.inp", run = 1L)

when forcing writeData = "always" data gets overwritten (with a warning)
resb <- mplusModeler(test, modelout = "model1.inp", run = 1L,

writeData = "always")

using writeData = "ifmissing", the default, no data re-written
resc <- mplusModeler(test, modelout = "model1.inp", run = 1L)

using writeData = "ifmissing", the default, data ARE written
if data changes
test <- mplusObject(MODEL = "mpg ON wt hp;

wt WITH hp;", rdata = mtcars[-10,])
resd <- mplusModeler(test, modelout = "model1.inp", run = 1L)

show summary
summary(resd)

show coefficients
coef(resd)

what if you wanted confidence intervals
and standardized values?
first update to tell Mplus you want them, re-run and print
test <- update(test, OUTPUT = ~ "CINTERVAL; STDYX;")
resd <- mplusModeler(test, modelout = "model1.inp", run = 1L)

coef(resd)
confint(resd)

now standardized
coef(resd, type = "stdyx")
confint(resd, type = "stdyx")

put together in one data frame if desired
merge(

38 mplusModeler

coef(resd, type = "stdyx"),
confint(resd, type = "stdyx"),
by = "Label")

remove files
unlink(resc$results$input$data$file)
unlink(resd$results$input$data$file)
unlink("model1.inp")
unlink("model1.out")

simple example of a model using builtin data
demonstrates use with a few more sections
test2 <- mplusObject(

TITLE = "test the MplusAutomation Package and mplusModeler wrapper;",
MODEL = "

mpg ON wt hp;
wt WITH hp;",

usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res2 <- mplusModeler(test2, modelout = "model2.inp", run = 1L)

remove files
unlink(res2$results$input$data$file)
unlink("model2.inp")
unlink("model2.out")

similar example using a robust estimator for standard errors
and showing how an existing model can be easily updated and reused
test3 <- update(test2, ANALYSIS = ~ "ESTIMATOR = MLR;")

res3 <- mplusModeler(test3, modelout = "model3.inp", run = 1L)
unlink(res3$results$input$data$file)
unlink("model3.inp")
unlink("model3.out")

now use the built in bootstrapping methods
note that these work, even when Mplus will not bootstrap
also note how categorical variables and weights are declared
in particular, the usevariables for Mplus must be specified
because mroe variables are included in the data than are in the
model. Note the R usevariables includes all variables for both
model and weights. The same is true for clustering.
test4 <- mplusObject(

TITLE = "test bootstrapping;",
VARIABLE = "

CATEGORICAL = cyl;
WEIGHT = wt;
USEVARIABLES = cyl mpg;",

ANALYSIS = "ESTIMATOR = MLR;",
MODEL = "

cyl ON mpg;",
usevariables = c("mpg", "wt", "cyl"),

mplusModeler 39

rdata = mtcars)

res4 <- mplusModeler(test4, "mtcars.dat", modelout = "model4.inp", run = 10L,
hashfilename = FALSE)

see the results
res4$results$boot

remove files
unlink("mtcars.dat")
unlink("model4.inp")
unlink("model4.out")

Monte Carlo Simulation Example
montecarlo <- mplusObject(
TITLE = "Monte Carlo Example;",
MONTECARLO = "
NAMES ARE i1-i5;
NOBSERVATIONS = 100;
NREPS = 100;
SEED = 1234;",
MODELPOPULATION = "
f BY i1-i5*1;
f@1;
i1-i5*1;",
ANALYSIS = "
ESTIMATOR = BAYES;
PROC = 2;
fbiter = 100;",
MODEL = "
f BY i1-i5*.8 (l1-l5);
f@1;
i1-i5*1;",
MODELPRIORS = "

l1-l5 ~ N(.5 .1);",
OUTPUT = "TECH9;")

fitMonteCarlo <- mplusModeler(montecarlo,
modelout = "montecarlo.inp",
run = 1L,
writeData = "always",
hashfilename = FALSE)

unlink("montecarlo.inp")
unlink("montecarlo.out")

Example including ID variable and extracting factor scores
dat <- mtcars
dat$UID <- 1:nrow(mtcars)

testIDs <- mplusObject(
TITLE = "test the mplusModeler wrapper with IDs;",
VARIABLE = "IDVARIABLE = UID;",

40 mplusModeler

MODEL = "
F BY mpg wt hp;",

SAVEDATA = "
FILE IS testid_fscores.dat;
SAVE IS fscores;
FORMAT IS free;",

usevariables = c("UID", "mpg", "wt", "hp"),
rdata = dat)

resIDs <- mplusModeler(testIDs, modelout = "testid.inp", run = 1L)

view the saved data from Mplus, including factor scores
the indicator variables, and the ID variable we specified
head(resIDs$results$savedata)

merge the factor scores with the rest of the original data
merge together by the ID column
dat <- merge(dat, resIDs$results$savedata[, c("F", "UID")],

by = "UID")

correlate merged factor scores against some other new variable
with(dat, cor(F, qsec))

can write multiply imputed data too
here are three "imputed" datasets
idat <- list(

data.frame(mpg = mtcars$mpg, hp = c(100, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(110, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(120, mtcars$hp[-1])))

if we turn on hashing in the filename the first time,
we can avoid overwriting notes the second time
testobjimp <- mplusObject(MODEL = "[mpg];", rdata = idat, imputed = TRUE)

testimp <- mplusModeler(
testobjimp,
modelout = "testimp.inp",
writeData = "ifmissing", hashfilename=FALSE)

testimp <- mplusModeler(
testobjimp,
modelout = "testimp.inp",
writeData = "ifmissing", hashfilename=TRUE)

testimp <- mplusModeler(
testobjimp,
modelout = "testimp.inp",
writeData = "ifmissing", hashfilename=TRUE,
run = TRUE)

mplusObject 41

testobjimp2 <- mplusObject(MODEL = "[hp];", rdata = idat, imputed = TRUE)
testimp2 <- mplusModeler(

testobjimp2,
modelout = "testimp2.inp",
writeData = "ifmissing", hashfilename=TRUE,
run = TRUE)

remove files
unlink(resIDs$results$input$data$file)
unlink("testid.inp")
unlink("testid.out")
unlink("testid_fscores.dat")
unlink("Mplus Run Models.log")

End(Not run)

mplusObject Create an Mplus model object

Description

This is a function to create an Mplus model object in R. The object holds all the sections of an Mplus
input file, plus some extra R ones. Once created, the model can be run using other functions such as
mplusModeler or updated using methods defined for the update function.

Usage

mplusObject(
TITLE = NULL,
DATA = NULL,
VARIABLE = NULL,
DEFINE = NULL,
MONTECARLO = NULL,
MODELPOPULATION = NULL,
MODELMISSING = NULL,
ANALYSIS = NULL,
MODEL = NULL,
MODELINDIRECT = NULL,
MODELCONSTRAINT = NULL,
MODELTEST = NULL,
MODELPRIORS = NULL,
OUTPUT = NULL,
SAVEDATA = NULL,
PLOT = NULL,
usevariables = NULL,
rdata = NULL,
autov = TRUE,
imputed = FALSE,

42 mplusObject

quiet = TRUE,
...

)

Arguments

TITLE A character string of the title for Mplus.

DATA A charater string of the data section for Mplus (note, do not define the filename
as this is generated automatically)

VARIABLE A character string of the variable section for Mplus (note, do not define the
variable names from the dataset as this is generated automatically)

DEFINE A character string of the define section for Mplus (optional)

MONTECARLO A character string of the montecarlo section for Mplus (optional). If used, autov
is defaults to FALSE instead of the usual default, TRUE, but may still be overwrit-
ten, if desired.

MODELPOPULATION

A character string of the MODEL POPULATION section for Mplus (optional).

MODELMISSING A character string of the MODEL MISSING section for Mplus (optional).

ANALYSIS A character string of the analysis section for Mplus (optional)

MODEL A character string of the model section for Mplus (optional, although typically
you want to define a model)

MODELINDIRECT A character string of the MODEL INDIRECT section for Mplus (optional).

MODELCONSTRAINT

A character string of the MODEL CONSTRAINT section for Mplus (optional).

MODELTEST A character string of the MODEL TEST section for Mplus (optional).

MODELPRIORS A character string of the MODEL PRIORS section for Mplus (optional).

OUTPUT A character string of the output section for Mplus (optional)

SAVEDATA A character string of the savedata section for Mplus (optional)

PLOT A character string of the plot section for Mplus (optional)

usevariables A character vector of the variables from the R dataset to use in the model.

rdata An R dataset to be used for the model.

autov A logical (defaults to TRUE) argument indicating whether R should attempt to
guess the correct variables to use from the R dataset, if usevariables is left
NULL.

imputed A logical whether the data are multiply imputed (a list). Defaults to FALSE.

quiet optional. If TRUE, show status messages in the console.

... Arguments passed on to mplusModeler if run > 0.

mplusObject 43

Details

Mplus model objects allow a base model to be defined, and then flexibly update the data, change the
precise model, etc. If a section does not vary between models, you can leave it the same. For exam-
ple, suppose you are fitting a number of models, but in all cases, wish to use maximum likelihood
estimator, “ANALYSIS: ESTIMATOR = ML;” and would like standardized output, “OUTPUT:
STDYX;”. Rather than retype those in every model, they can be defined in one Mplus model object,
and then that can simply be updated with different models, leaving the analysis and output sections
untouched. This also means that if a reviewer comes back and asks for all analyses to be re-run say
using the robust maximum likelihood estimator, all you have to do is change it in the model object
once, and re run all your code.

Value

A list of class mplusObject with elements

TITLE The title in Mplus (if defined)

DATA The data section in Mplus (if defined)

VARIABLE The variable section in Mplus (if defined)

DEFINE The define section in Mplus (if defined)

MONTECARLO The montecarlo section in Mplus (if defined)
MODELPOPULATION

The modelpopulation section in Mplus (if defined)

MODELMISSING The modelmissing section in Mplus (if defined)

ANALYSIS The analysis section in Mplus (if defined)

MODEL The model section in Mplus (if defined)

MODELINDIRECT The modelindirect section in Mplus (if defined)
MODELCONSTRAINT

The modelconstraint section in Mplus (if defined)

MODELTEST The modeltest section in Mplus (if defined)

MODELPRIORS The modelpriors section in Mplus (if defined)

OUTPUT The output section in Mplus (if defined)

SAVEDATA The savedata section in Mplus (if defined)

PLOT The plot section in Mplus (if defined)

results NULL by default, but can be later updated to include the results from the model
run.

usevariables A character vector of the variables from the R data set to be used.

rdata The R data set to use for the model.

imputed A logical whether the data are multiply imputed.

autov A logical whether the data should have the usevariables detected automatically
or not

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

44 mplusRcov

See Also

mplusModeler

Examples

example1 <- mplusObject(MODEL = "mpg ON wt;",
usevariables = c("mpg", "hp"), rdata = mtcars)

str(example1)
rm(example1)

R figures out the variables automagically, with a message
example2 <- mplusObject(MODEL = "mpg ON wt;",

rdata = mtcars, autov = TRUE)
str(example2)
rm(example2)

R can also try to figure out a list of variables when
variable names are hyphenated first-last variable, all variables
between the first and last one will be included
example3 <- mplusObject(MODEL = "mpg ON wt-vs;",

rdata = mtcars, autov = TRUE)
str(example3)
rm(example3)

R warns if the first 8 characters of a (used) variable name are not unique
as they will be indistinguishable in the Mplus output
example4 <- mplusObject(MODEL = "basename_01 ON basename_02;",

rdata = data.frame(basename_01 = 1:5, basename_02 = 5:1),
autov = TRUE)

rm(example4)

mplusRcov Create Mplus code for various residual covariance structures.

Description

This function makes it easy to write the Mplus syntax for various residual covariance structure.

Usage

mplusRcov(
x,
type = c("homogenous", "heterogenous", "cs", "toeplitz", "ar", "un"),
r = "rho",
e = "e",
collapse = FALSE

)

mplusRcov 45

Arguments

x input character vector of variable names, ordered by time

type A character string indicating the type of residual covariance structure to be used.
Defaults to ‘homogenous’. Current options include ‘homogenous’, ‘heteroge-
nous’, ‘cs’ for compound symmetric, ‘toeplitz’ for banded toeplitz, ‘ar’ for au-
toregressive, and ‘un’ for unstructured.

r a character vector of the base label to name covariance parameters. Defaults to
‘rho’.

e a character vector of the error variance of the variable. Used to create constraints
on the covariance parameters. Defaults to ‘e’.

collapse whether to collapse the covariance code using ‘PWITH’. Note that at the time
of writing, Mplus does not allow more than 80 characters per row. Defaults to
FALSE.

Details

The homogenous residual covariance structure estimates one parameter: the residual variance, σ2
e .

The residual variance is assumed to be identical for all variables and all covariances are assumed to
be zero. The structure is represented in this table.

t1 t2 t3 . . . tn
t1 σ2

e . . .
t2 0 σ2

e . . .
t3 0 0 σ2

e . . .
.
tn 0 0 0 . . . σ2

e

The heterogenous residual covariance structure estimates n parameters, where n is the number of
variables. A unique residual variance is estimated for every variable. All covariances are assumed
to be zero. The structure is represented in this table.

t1 t2 t3 . . . tn
t1 σ2

e1 . . .
t2 0 σ2

e2 . . .
t3 0 0 σ2

e3 . . .
.
tn 0 0 0 . . . σ2

en

The compound symmetric residual covariance structure estimates two parameters: one for the
residual variance , σ2

e , and one for the covariance. The residual variance is assumed to be identical
for all variables and all covariances are assumed to be identical. The structure is represented in this
table.

t1 t2 t3 . . . tn

46 mplusRcov

t1 σ2
e . . .

t2 ρ σ2
e . . .

t3 ρ ρ σ2
e . . .

.
tn ρ ρ ρ . . . σ2

e

The toeplitz residual covariance structure estimates n parameters, one for every band of the matrix.
The residual variance , σ2

e , is assumed to be identical for all variables. The covariances one step
removed are all assumed identical. Likewise for all further bands. The structure is represented in
this table.

t1 t2 t3 . . . tn
t1 σ2

e . . .
t2 ρ σ2

e . . .
t3 ρ2 ρ σ2

e . . .
.
tn ρn ρn−1 ρn−2 . . . σ2

e

The autoregressive residual covariance structure has two parameters: the residual variance, σ2
e and

the correlation between adjacent time points, ρ. The variances are constrained to be equal for all
time points. A single correlation parameter is estimated. The ρ is the correlation between adjacent
time points such as 1 and 2 or 2 and 3. More distant relationships are assumed to have smaller
correlations, decreasing exponentially. Thus between 1 and 3, the estimate is ρ2. The structure is
represented in this table.

t1 t2 t3 . . . tn
t1 σ2

e . . .
t2 ρ σ2

e . . .
t3 ρ2 ρ σ2

e . . .
.
tn ρn−1 ρn−2 ρn−3 . . . σ2

e

Because structural equation models generally model covariance structures, the autoregressive resid-
ual structure must be parameterized in terms of covariances. This is done in two parts. First, the
function returns syntax to estimate all the pairwise covariances, labelling the parameters ρ, ρ2, etc.
so that they are constrained to be equal. Next, it returns the syntax for the necessary model con-
straints to constrain the different covariances, to decrease exponentially in their correlations. This
is done via:

ρ2 = (
ρ

σ2
e

)2σ2
e

and likewise for all later time points.

The unstructured residual covariance structure estimates n(n+1)
2 parameters. It is unstructured in

that every variance and covariance is freely estimated with no constraints. However, in most cases,
this results in an overparameterized model and is unestimable. The structure is represented in this
table.

mplusRcov 47

t1 t2 t3 . . . tn
t1 σ2

e1 . . .
t2 ρ1 σ2

e2 . . .
t3 ρ2 ρ3 σ2

e3 . . .
.
tn ρ5 ρ6 ρ7 . . . σ2

en

Value

A named character vector of class ‘MplusRstructure’ with four elements:

all A character string collapsing all other sections.

Variances A character string containing all of the variances.

Covariances A character string containing all of the covariances, properly labelled to allow
constraints and the autoregressive residual covariance structure.

Constraints A character string containing the ‘MODEL CONSTRAINT’ section and code
needed to parameterize the residual covariance structure as autoregressive.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

all five structures collapsing
mplusRcov(letters[1:4], "homogenous", "rho", "e", TRUE)
mplusRcov(letters[1:4], "heterogenous", "rho", "e", TRUE)
mplusRcov(letters[1:4], "cs", "rho", "e", TRUE)
mplusRcov(letters[1:4], "toeplitz", "rho", "e", TRUE)
mplusRcov(letters[1:4], "ar", "rho", "e", TRUE)
mplusRcov(letters[1:4], "un", "rho", "e", TRUE)

all five structures without collapsing
useful for long names or many variables
where a line may cross 80 characters
mplusRcov(letters[1:4], "homogenous", "rho", "e", FALSE)
mplusRcov(letters[1:4], "heterogenous", "rho", "e", FALSE)
mplusRcov(letters[1:4], "cs", "rho", "e", FALSE)
mplusRcov(letters[1:4], "toeplitz", "rho", "e", FALSE)
mplusRcov(letters[1:4], "ar", "rho", "e", FALSE)
mplusRcov(letters[1:4], "un", "rho", "e", FALSE)

48 paramExtract

paramExtract Extract parameters from a data frame of Mplus estimates

Description

This is a simple convenience function designed to facilitate looking at specific parameter types by
easily return a subset of a data frame with those types only. It is designed to follow up the results
returned from the readModels function.

Usage

paramExtract(
x,
params = c("regression", "loading", "undirected", "expectation", "variability", "new")

)

Arguments

x A data frame (specifically the type returned by readModels) containing param-
eters. Should be specific such as unstandardized and the data frame must have a
column called ‘paramHeader’.

params A character string indicating the types of parameters to be returned. Options cur-
rently include ‘regression’, ‘loading’, ‘undirected’, ‘expectation’, ‘variability’,
and ‘new’ for new/additional parameters. Regressions include regression of one
variable ON another. ‘loading’ include indicator variables (which are assumed
caused by the underlying latent variable) and variables in latent growth models
(BY or |). Undirected paths currently only include covariances, indicated by the
WITH syntax in Mplus. Expectation paths are the unconditional or conditional
expectations of variables. In other words those parameters related to the first
moments. For independent variables, these are the means, E(X) and the condi-
tional means or intercepts, E(X|f(θ)) where f(θ) is the model, some function
of the parameters, θ. Finally ‘variability’ refers to both variances and resid-
ual variances, corresponding to the second moments. As with the expectations,
variances are unconditional for variables that are not predicted or conditioned
on any other variable in the model whereas residual variances are conditional on
the model. Note that R uses fuzzy matching so that each of these can be called
via shorthand, ‘r’, ‘l’, ‘u’, ‘e’, and ‘v’.

Value

A subset data frame with the parameters of interest.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

parseCatOutput 49

See Also

readModels

Examples

Not run:
test <- mplusObject(
TITLE = "test the MplusAutomation Package and my Wrapper;",
MODEL = "

mpg ON wt hp;
wt WITH hp;",

usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

store just the unstandardized parameters in 'd'
d <- res$results$parameters$unstandardized
extract just regression parameters
paramExtract(d, "regression")
extract other types of parameters using shorthand
paramExtract(d, "u")
paramExtract(d, "e")
paramExtract(d, "v")

End(Not run)

parseCatOutput Parse Categorical Output

Description

Helper function for parsing output with variables and categories.

Usage

parseCatOutput(text)

Arguments

text The output to parse.

Value

The parsed output

Author(s)

Michael Hallquist

50 parseMplus

Examples

"
Example:
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

SOP2A
Category 1 0.254 631.000
Category 2 0.425 1056.000
Category 3 0.174 432.000
Category 4 0.147 365.000

Or Item Categories in IRT Parameterization

Item Categories
U1
Category 1 0.000 0.000 0.000 1.000
Category 2 -0.247 0.045 -5.534 0.000
Category 3 0.699 0.052 13.325 0.000
Category 4 -0.743 0.057 -12.938 0.000
Category 5 0.291 0.052 5.551 0.000

"

parseMplus Check Mplus code for missing semicolons or too long lines.

Description

The function parses a character string containing Mplus code and checks that every non blank line
ends in either a colon or a semicolon. In addition, it checks that every line is less than 90 characters,
because Mplus ignores everything after 90 characters on a line which can be a source of enigmatic
errors.

Usage

parseMplus(x, add = FALSE)

Arguments

x a character string containing Mplus code.

add logical indicating whether or not to add semicolons to lines that do not have
them. Defaults to FALSE.

Details

The function is fairly basic at the moment. It works by simply removing blank space (spaces, tabs,
etc.) and then if a line does not terminate in a colon or semicolon, it returns a note and the line
number. Optionally, it can add semicolons to any lines missing them and return the input with
added semicolons. To check for lines that are too long, all trailing (but not before) white space is
removed, and then the number of characters is checked.

parseMplusSyntax 51

Value

a character vector containing the input text and optionally added semicolons.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

mplusModeler

Examples

sample input
test <- "
MODEL:

mpg ON wt hp;
wt WITH hp

"
check and return
cat(parseMplus(test), file=stdout(), fill=TRUE)
add missing semicolons and return
cat(parseMplus(test, TRUE), file=stdout(), fill=TRUE)
line that is too long for Mplus
test <- "
MODEL:
mpg cyl disp hp drat wt qsec vs am gear PWITH cyl disp hp drat wt qsec vs am gear carb;

"
cat(parseMplus(test), file=stdout())

parseMplusSyntax Convert an Mplus syntax string into a parsed list

Description

Convert an Mplus syntax string into a parsed list

Usage

parseMplusSyntax(syntax, dropSectionNames = TRUE)

52 plot.mplusObject

plot.mplusObject Plot coefficients for an mplusObject

Description

This is a method for plotting the coefficients of an mplusObject.

Usage

S3 method for class 'mplusObject'
plot(x, y, type = c("stdyx", "un", "std", "stdy"), ...)

Arguments

x An object of class mplusObject

y Not currently used

type A character vector indicating the type of coefficients to return. One of “un”,
“std”, “stdy”, or “stdyx”. Defaults to “stdyx”.

... Additional arguments to pass on (not currently used)

Value

Nothing. Called for its side effect of plotting the coefficients.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

Not run:
simple example of a model using builtin data
demonstrates use
test <- mplusObject(

TITLE = "test the MplusAutomation Package;",
MODEL = "

mpg ON wt hp;
wt WITH hp;",

OUTPUT = "STANDARDIZED;",
usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

example of the coef method
plot(res)

remove files

plotMixtureDensities 53

unlink("mtcars.dat")
unlink("model1.inp")
unlink("model1.out")
unlink("Mplus Run Models.log")

End(Not run)

plotMixtureDensities Create density plots for mixture models

Description

Creates a density plot for a single object of class ’mplus.model’, or a faceted plot of density plots
for an object of class ’mplus.model.list’. For each variable, a Total density plot will be shown,
along with separate density plots for each latent class, where cases are weighted by the posterior
probability of being assigned to that class.

Usage

plotMixtureDensities(
modelList,
variables = NULL,
bw = FALSE,
conditional = FALSE,
alpha = 0.2,
facet_labels = NULL

)

Arguments

modelList A list object of Mplus models, or a single Mplus model

variables Which variables to plot. If NULL, plots all variables that are present in all Mplus
models.

bw Logical. Whether to make a black and white plot (for print) or a color plot.
Defaults to FALSE, because these density plots are hard to read in black and
white.

conditional Logical. Whether to show a conditional density plot (surface area is divided
amongst the latent classes), or a classic density plot (surface area of the total
density plot is equal to one, and is subdivided amongst the classes).

alpha Numeric (0-1). Only used when bw and conditional are FALSE. Sets the trans-
parency of geom_density, so that classes with a small number of cases remain
visible.

facet_labels Named character vector, the names of which should correspond to the facet la-
bels one wishes to rename, and the values of which provide new names for these
facets. For example, to rename variables, in the example with the ’iris’ data be-
low, one could specify: facet_labels = c("Pet_leng" = "Petal length").

54 plotMixtures

Value

An object of class ’ggplot’.

Note

This function returns warnings, indicating that sum(weights) != 1. These can be ignored. The
sum of the "Total" density per variable per model is equal to 1, and the sum of all of the posterior
probabilities is equal to 1. This results in a normal density plot for the "Total", which is subdivided
by the latent classes, in proportion to the posterior probabilities of participants being assigned to
those clases.

Author(s)

Caspar J. van Lissa

Examples

Not run:
results <- createMixtures(classes = 1:3, filename_stem = "iris",

rdata = iris, run = 1L)
plotMixtureDensities(results)

End(Not run)
Not run:
plotMixtureDensities(results, variables = "PETAL_LE")

End(Not run)
Not run:
plotMixtureDensities(results, bw = TRUE)

End(Not run)
Not run:
plotMixtureDensities(results, bw = FALSE, conditional = TRUE)

End(Not run)
Not run:
plotMixtureDensities(results[[2]], variables = "PETAL_LE")

End(Not run)

plotMixtures Create latent profile plots

Description

Creates a profile plot for a single object of class ’mplus.model’, or a faceted plot of profile plots for
an object of class ’mplus.model.list’.

plotMixtures 55

Usage

plotMixtures(
modelList,
variables = NULL,
coefficients = c("unstandardized", "stdyx.standardized", "stdy.standardized",
"stdy.standardized"),

parameter = c("Means", "Intercepts"),
ci = 0.95,
bw = FALSE,
rawdata = FALSE,
alpha_range = c(0, 0.1)

)

Arguments

modelList A list of Mplus mixture models, or a single mixture model

variables A character vectors with the names of the variables (included in the Mplus out-
put) to be plotted.

coefficients Which type of coefficients to plot on the y-axis; default is ’unstandardized’.
Options include: c(’stdyx.standardized’, ’stdy.standardized’, ’std.standardized’)

parameter Which parameter to plot (from Mplus parameter estimate headings included in
the output). Defaults to c(’Means’, ’Intercepts’).

ci What confidence interval should the errorbars span? Defaults to a 95% confi-
dence interval. Set to NULL to remove errorbars.

bw Logical. Should the plot be black and white (for print), or color?

rawdata Should raw data be plotted in the background? Setting this to TRUE might result
in long plotting times. Requires including the Mplus syntax ’SAVEDATA: FILE
IS "filename"; SAVE = cprobabilities’ in the Mplus input.

alpha_range The minimum and maximum values of alpha (transparancy) for the raw data.
Minimum should be 0; lower maximum values of alpha can help reduce over-
plotting.

Value

An object of class ’ggplot’.

Author(s)

Caspar J. van Lissa

Examples

Not run:
res <- createMixtures(classes = 1:2, filename_stem = "cars",

model_overall = "wt ON drat;",
model_class_specific = "wt; qsec;",
rdata = mtcars,

56 prepareMplusData

usevariables = c("wt", "qsec", "drat"),
OUTPUT = "standardized",
run = 1L)

plotMixtures(res, rawdata = TRUE)

End(Not run)
Not run:
plotMixtures(res, variables = "wt")

End(Not run)
Not run:
plotMixtures(res, coefficients = "stdyx.standardized")

End(Not run)

prepareMplusData Create tab-delimited file and Mplus input syntax from R data.frame

Description

The prepareMplusData function converts an R data.frame (or a list of data frames), into a tab-
delimited file (without header) to be used in an Mplus input file. The corresponding Mplus syntax,
including the data file definition and variable names, is printed to the console or optionally to an
input file.

Usage

prepareMplusData(
df,
filename = NULL,
inpfile = FALSE,
keepCols = NULL,
dropCols = NULL,
dummyCode = NULL,
interactive = TRUE,
overwrite = TRUE,
imputed = FALSE,
writeData = c("always", "ifmissing", "never"),
hashfilename = FALSE,
quiet = TRUE

)

Arguments

df The R data.frame to be prepared for Mplus

filename The path and filename for the tab-delimited data file for use with Mplus. Exam-
ple: "C:/Mplusdata/data1.dat"

prepareMplusData 57

inpfile Logical value whether the Mplus syntax should be written to the console or
to an input file. Defaults to FALSE. If TRUE, the file name will be the same as
filename with the extension changed to .inp. Alternately, this can be a character
string giving the file name to write the Mplus syntax to.

keepCols A character vector specifying the variable names within df to be output to
filename or a numeric vector of the column indices to be output or a logical
vector corresponding to the same.

dropCols A character vector specifying the variable names within df to be omitted from
the data output to filename or a numeric vector of the column indices not to be
output or a logical vector corresponding to the same.

dummyCode An optional character vector of column names indicating categorical variables in
the dataset that should be converted into dummy codes (using the fastDummies
package). Note that one dummy code is returned for *each level*, so no refer-
ence category is implied. Thus, it is up to you to drop one of the dummy codes
in the Mplus syntax to denote the reference category and avoid multicollinearity.

interactive Logical value indicating whether file names should be selected interactively. If
filename is missing and interative=TRUE, then a dialogue box will pop up to
select a file or a console prompt if in a non interactive context. Defaults to TRUE.

overwrite Logical value indicating whether data and input (if present) files should be over-
written. Defaults to TRUE to be consistent with prior behavior. If FALSE and the
file to write the data to already exists, it will throw an error.

imputed A logical whether data are multiply imputed. Defaults to FALSE. If TRUE, the data
should be a list, where each element of the list is a multiply imputed dataset.

writeData A character vector, one of ‘always’, ‘ifmissing’, ‘never’ indicating whether the
data files (*.dat) should be written to disk. Defaults to ‘always’ for consistency
with previous behavior. See details for further information.

hashfilename A logical whether or not to add a hash of the raw data to the data file name.
Defaults to FALSE for consistency with previous behavior where this feature was
not available.

quiet optional. If TRUE, show status messages in the console.

Details

The writeData argument is new and can be used to reduce overhead from repeatedly writing the
same data from R to the disk. When using the ‘always’ option, prepareMplusData behaves as
before, always writing data from R to the disk. When ‘ifmissing’, R generates an md5 hash of
the data prior to writing it out to the disk. The md5 hash is based on: (1) the dimensions of the
dataset, (2) the variable names, (3) the class of every variable, and (4) the raw data from the first
and last rows. This combination ensures that under most all circumstances, if the data changes, the
hash will change. The hash is appended to the specified data file name (which is controlled by the
logical hashfilename argument). Next R checks in the directory where the data would normally
be written. If a data file exists in that directory that matches the hash generated from the data, R
will use that existing data file instead of writing out the data again. A final option is ‘never’. If this
option is used, R will not write the data out even if no file matching the hash is found.

58 prepareMplusData

Value

Invisibly returns a character vector of the Mplus input syntax. Primarily called for its side effect of
creating Mplus data files and optionally input files.

Author(s)

Michael Hallquist

Examples

Not run:
library(foreign)

study5 <- read.spss("reanalysis-study-5-mt-fall-08.sav", to.data.frame=TRUE)
ASData5 <- subset(study5, select=c("ppnum", paste("as", 1:33, sep="")))

prepareMplusData(ASData5, "study5.dat")

basic example
test01 <- prepareMplusData(mtcars, "test01.dat")

see that syntax was stored
test01

example when there is a factor and logical
tmpd <- mtcars
tmpd$cyl <- factor(tmpd$cyl)
tmpd$am <- as.logical(tmpd$am)
prepareMplusData(tmpd, "test_type.dat")
rm(tmpd)

by default, if re-run, data is re-written, with a note
test01b <- prepareMplusData(mtcars, "test01.dat")

if we turn on hashing in the filename the first time,
we can avoid overwriting notes the second time
test01c <- prepareMplusData(mtcars, "test01c.dat", hashfilename=TRUE)

now that the filename was hashed in test01c, future calls do not re-write data
as long as the hash matches
test01d <- prepareMplusData(mtcars, "test01c.dat",

writeData = "ifmissing", hashfilename=TRUE)

now that the filename was hashed in test01c, future calls do not re-write data
as long as the hash matches
test01db <- prepareMplusData(mtcars, "test01d.dat",

writeData = "ifmissing", hashfilename=TRUE)

however, if the data change, then the file is re-written

prepareMplusData 59

test01e <- prepareMplusData(iris, "test01c.dat",
writeData = "ifmissing", hashfilename=TRUE)

tests for keeping and dropping variables
prepareMplusData(mtcars, "test02.dat", keepCols = c("mpg", "hp"))
prepareMplusData(mtcars, "test03.dat", keepCols = c(1, 2))
prepareMplusData(mtcars, "test04.dat",

keepCols = c(TRUE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE))

prepareMplusData(mtcars, "test05.dat", dropCols = c("mpg", "hp"))
prepareMplusData(mtcars, "test06.dat", dropCols = c(1, 2))
prepareMplusData(mtcars, "test07.dat",

dropCols = c(TRUE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE))

interactive (test08.dat)
prepareMplusData(mtcars, interactive=TRUE)

write syntax to input file, not stdout
prepareMplusData(mtcars, "test09.dat", inpfile=TRUE)

write syntax to alternate input file, not stdout
prepareMplusData(mtcars, "test10.dat", inpfile="test10alt.inp")

should be error, no file
prepareMplusData(mtcars, interactive=FALSE)

new warnings if it is going to overwrite files
(the default to be consistent with prior behavior)
prepareMplusData(mtcars, "test10.dat")

new warnings if it is going to overwrite files
(the default to be consistent with prior behavior)
prepareMplusData(mtcars, "test11.dat", inpfile="test10alt.inp")

new errors if files exist and overwrite=FALSE
prepareMplusData(mtcars, "test10.dat",

inpfile="test10alt.inp", overwrite=FALSE)

can write multiply imputed data too
here are three "imputed" datasets
idat <- list(

data.frame(mpg = mtcars$mpg, hp = c(100, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(110, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(120, mtcars$hp[-1])))

if we turn on hashing in the filename the first time,
we can avoid overwriting notes the second time
testimp1 <- prepareMplusData(idat, "testi1.dat",

writeData = "ifmissing", hashfilename=TRUE,

60 print.MplusRstructure

imputed = TRUE)

now that the filename was hashed, future calls do not re-write data
as long as all the hashes match
testimp2 <- prepareMplusData(idat, "testi2.dat",

writeData = "ifmissing", hashfilename=TRUE,
imputed = TRUE)

in fact, the number of imputations can decrease
and they still will not be re-written
testimp3 <- prepareMplusData(idat[-3], "testi3.dat",

writeData = "ifmissing", hashfilename=TRUE,
imputed = TRUE)

however, if the data changes, then all are re-written
note that it warns for the two files that already exist
as these two are overwritten

idat2 <- list(
data.frame(mpg = mtcars$mpg, hp = c(100, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(109, mtcars$hp[-1])),
data.frame(mpg = mtcars$mpg, hp = c(120, mtcars$hp[-1])))

testimp4 <- prepareMplusData(idat2, "testi4.dat",
writeData = "ifmissing", hashfilename=TRUE,
imputed = TRUE)

End(Not run)

print.MplusRstructure Print an Mplus Residual Structure object

Description

This is a method for printing an Mplus Residual Structure object.

Usage

S3 method for class 'MplusRstructure'
print(x, ...)

Arguments

x An object of class MplusRstructure

... Additional arguments to pass on (not currently used)

Value

NULL Called for its side effect of printing the object to the console

readModels 61

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

Other Mplus-Formatting: coef.mplus.model(), confint.mplus.model(), extract(), summary.mplusObject()

Examples

default 'show' uses printing
mplusRcov(c("a", "b", "c"), type = "ar")

also if calling print explicitly
print(mplusRcov(c("a", "b", "c"), type = "ar"))

to see all aspects of the raw/original object
str(mplusRcov(c("a", "b", "c"), type = "ar"))

readModels Read Parameters, Summary Statistics, and Savedata from Mplus Out-
put

Description

Extracts information from one or more Mplus output files, including fit statistics and parameters.
Its is to parse all (supported) aspects of Mplus output and to combine these into a list object, with
one element per output file identified.

Usage

readModels(
target = getwd(),
recursive = FALSE,
filefilter,
what = "all",
quiet = TRUE

)

Arguments

target the directory containing Mplus output files (.out) to parse OR the single out-
put file to be parsed. May be a full path, relative path, or a filename within
the working directory. Defaults to the current working directory. Example:
"C:/Users/Michael/Mplus Runs"

recursive optional. If TRUE, parse all models nested in subdirectories within target. De-
faults to FALSE.

62 readModels

filefilter a Perl regular expression (PCRE-compatible) specifying particular output files to
be parsed within directory. See regex or http://www.pcre.org/pcre.txt
for details about regular expression syntax.

what a character vector denoting what aspects of Mplus output to extract. Defaults
to "all", which will extract all supported output sections. See details for addi-
tional information.

quiet whether to suppress printing to the screen the file currently being processed.
Defaults to TRUE.

Details

The what parameter defaults to "all", which extracts all supported output. If you would like to
extract a reduced set of output sections (especially to speed up the function when reading many
files), specify the sections as a character vector from the following options:

c("input", "warn_err", "data_summary", "sampstat", "covariance_coverage", "summaries", "param-
eters", "class_counts", "indirect", "mod_indices", "residuals", "savedata", "bparameters", "tech1",
"tech3", "tech4", "tech7", "tech8", "tech9", "tech10", "tech12", "fac_score_stats", "lcCondMeans",
"gh5", "output")

Value

A list with one mplus.model per file. Each mplus.model object is composed of elements containing
major output sections, as detailed below. If target is a single file, then the top-level elements will
be a single mplus.model object, not a list of files. Specific elements are:

input Mplus input syntax parsed into a list by major section

warnings Syntax and estimation warnings as a list

errors Syntax and estimation errors as a list

data_summary Output of SUMMARY OF DATA section, including cluster sizes and ICCs

sampstat Sample statistics provided by OUTPUT: SAMPSTAT, if specified
covariance_coverage

Covariance coverage matrix for checking missingness patterns

summaries Summary statistics from extractModelSummaries, having structure as speci-
fied by that function

parameters Model parameters from extractModelParameters, having structure as speci-
fied by that function

class_counts Latent class counts and proportions for models that include a categorical latent
variable

indirect Output of MODEL INDIRECT if available in output. Contains $overall and
$specific data.frames for each indirect effect section

mod_indices Model modification indices from extractModIndices, having structure as spec-
ified by that function

residuals a list containing relevant information from OUTPUT: RESIDUALS

savedata_info File information about SAVEDATA files related to this output

savedata SAVEDATA file as an R data.frame, as described in getSavedata_Data

http://www.pcre.org/pcre.txt

readModels 63

bparameters an mcmc.list object containing the draws from the MCMC chains for a Bayesian
model that uses the SAVEDATA: BPARAMETERS command

tech1 a list containing parameter specification and starting values from OUTPUT:
TECH1

tech3 a list containing parameter covariance and correlation matrices from OUTPUT:
TECH3

tech4 a list containing means, covariances, and correlations for latent variables from
OUTPUT: TECH4

tech7 a list containing sample statistics for each latent class from OUTPUT: TECH7

tech8 a list containing optimization history of the model. Currently only supports
potential scale reduction in BAYES. OUTPUT: TECH8

tech9 a list containing warnings/errors from replication runs for MONTECARLO anal-
yses from OUTPUT: TECH9

tech10 a list containing model fit information from OUTPUT: TECH10

tech12 a list containing observed versus estimated sample statistics for TYPE=MIXTURE
analyses from OUTPUT: TECH12

fac_score_stats

factor score mean, correlation, and covariance structure from SAMPLE STATIS-
TICS FOR ESTIMATED FACTOR SCORES section

lcCondMeans conditional latent class means and pairwise comparisons, obtained using auxil-
iary(e) syntax in latent class models

r3step predictors of latent class membership using the 3-step procedure (R3STEP)

gh5 a list containing data from the gh5 (graphics) file corresponding to this output.
(Requires rhdf5 package)

h5results a list containing data from h5results file produced by Mplus v8.11+. (Requires
rhdf5 package)

output The entire, raw output file.

Author(s)

Michael Hallquist

Examples

Not run:
allOutput <- readModels(

"C:/Program Files/Mplus/Mplus Examples/User's Guide Examples", recursive=TRUE)

End(Not run)

64 runModels

runModels Run Mplus Models

Description

This function runs a group of Mplus models (.inp files) located within a single directory or nested
within subdirectories.

Usage

runModels(
target = getwd(),
recursive = FALSE,
filefilter = NULL,
showOutput = FALSE,
replaceOutfile = "always",
logFile = "Mplus Run Models.log",
Mplus_command = detectMplus(),
killOnFail = TRUE,
local_tmpdir = FALSE,
quiet = TRUE

)

Arguments

target a character vector where each element is a directory containing Mplus input files
(.inp) to run OR a single .inp file to be run. Elements may be a full path, relative
path, or a filename within the working directory. Defaults to the current working
directory. Example: “C:/Users/Michael/Mplus Runs”

recursive optional. If TRUE, run all models nested in subdirectories within directory.
Defaults to FALSE. Not relevant if target is a single file.

filefilter a Perl regular expression (PCRE-compatible) specifying particular input files to
be run among those found in target. See regex or http://www.pcre.org/
pcre.txt for details about regular expression syntax.

showOutput optional. If TRUE, show estimation output (TECH8) in the R console. Note that
if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replaceOutfile optional. Currently supports three settings: “always”, which runs all models,
regardless of whether an output file for the model exists; “never”, which does
not run any model that has an existing output file; and “modifiedDate”, which
only runs a model if the modified date for the input file is more recent than the
output file modified date (implying there have been updates to the model).

logFile optional. If non-null, specifies a file (and optionally, directory) that records the
settings passed into the function and the models run (or skipped) during the run.

http://www.pcre.org/pcre.txt
http://www.pcre.org/pcre.txt

runModels_Interactive 65

Mplus_command optional. N.B.: No need to pass this parameter for most users (has intelligent
defaults). Allows the user to specify the name/path of the Mplus executable
to be used for running models. This covers situations where Mplus is not in
the system’s path, or where one wants to test different versions of the Mplus
program.

killOnFail optional. Windows only for now. If TRUE, kill all processes named mplus.exe
when runModels does not terminate normally. Defaults to TRUE.

local_tmpdir optional. Linux/Mac for now. If TRUE, set the TMPDIR environment variable
to the location of the .inp file prior to execution. This is useful in Monte Carlo
studies where many instances of Mplus may run in parallel and we wish to avoid
collisions in temporary files among processes.

quiet optional. If FALSE, show status messages in the console.

Value

None. Function is used for its side effects (running models).

Author(s)

Michael Hallquist

See Also

runModels_Interactive

Examples

Not run:
runModels("C:/Users/Michael/Mplus Runs", recursive=TRUE, showOutput=TRUE,
replaceOutfile="modifiedDate", logFile="MH_RunLog.txt",
Mplus_command="C:\\Users\\Michael\\Mplus Install\\Mplus51.exe")

End(Not run)
Not run:

runModels(getwd(), filefilter = "ex8.*", logFile=NULL)

End(Not run)

runModels_Interactive Run Mplus Models Using Graphical Interface

Description

This function is provides a graphical user interface to the runModels function. It uses Tcl/Tk to
display a window in which the user can specify parameters for runModels, including the directory
for runs, recursing through subdirectories, displaying output on the console, and replacing existing
outfiles.

66 runModels_Interactive

Usage

runModels_Interactive(
directory = getwd(),
recursive = "0",
showOutput = "1",
replaceOutfile = "1",
checkDate = "0",
logFile = "1"

)

Arguments

directory optional. The starting directory that will display in the dialog window. Defaults
to the current working directory.

recursive optional. Whether the recursive checkbox should be checked when the window
opens. “0” for FALSE, “1” for TRUE.

showOutput optional. Whether the show output checkbox should be checked when the win-
dow opens. “0” for FALSE, “1” for TRUE.

replaceOutfile optional. Whether the replace outfile checkbox should be checked when the
window opens. “0” for FALSE, “1” for TRUE.

checkDate optional. Whether the check modified date checkbox should be checked when
the window opens. “0” for FALSE, “1” for TRUE.

logFile optional. Whether the log file checkbox should be checked when the window
opens. “0” for FALSE, “1” for TRUE.

Details

This function exists as a GUI wrapper for runModels and does not provide any distinct functionality.

Value

None. Function is used to display user interface for running models.

Author(s)

Michael Hallquist

See Also

runModels

Examples

interactive, none

separateHyphens 67

separateHyphens Separate Hyphenated Variable Strings

Description

This code is a simplified form of expandCmd from the lavaan package. It separates hyphenated
variable strings into a list of vectors, while ignoring hyphens that may be used in numbers.

Usage

separateHyphens(cmd)

Arguments

cmd A character string

Details

Note that this is an internal function only.

Value

The character string if no hyphens, or a list of vectors if there are hyphens.

Author(s)

Michael Hallquist revised by Joshua Wiley

Examples

MplusAutomation:::separateHyphens("x1x4")
MplusAutomation:::separateHyphens("x1-x4")
MplusAutomation:::separateHyphens("x1-x4; x1*-1; v1-v3;")

showSummaryTable Display summary table of Mplus model statistics in separate window

Description

Displays a summary table of model fit statistics extracted using the extractModelSummaries func-
tion. This function relies on the showData function from the relimp package, which displays data
in a Tk-based window. By default, the following summary statistics are included: Title, LL,
Parameters, AIC, AICC, BIC, RMSEA_Estimate, but these are customizable using the keepCols
and dropCols parameters.

68 showSummaryTable

Usage

showSummaryTable(
modelList,
keepCols,
dropCols,
sortBy = NULL,
font = "Courier 9"

)

Arguments

modelList A list of models (as a data.frame) returned from the extractModelSummaries
function.

keepCols A vector of character strings indicating which columns/variables to display in
the summary. Only columns included in this list will be displayed (all others ex-
cluded). By default, keepCols is: c("Title", "LL", "Parameters", "AIC",
"AICC", "BIC", "RMSEA_Estimate"). Example: c("Title", "LL", "AIC",
"CFI")

dropCols A vector of character strings indicating which columns/variables to omit from
the summary. Any column not included in this list will be displayed. By default,
dropCols is NULL. Example: c("InputInstructions", "TLI")

sortBy Optional. Field name (as character string) by which to sort the table. Typically
an information criterion (e.g., “AIC” or “BIC”) is used to sort the table. Defaults
to NULL, which does not sort the table.

font Optional. The font to be used to display the summary table. Defaults to Courier
9.

Value

No value is returned by this function. It is solely used to display the summary table in a separate
window.

Note

You must choose between keepCols and dropCols because it is not sensible to use these together
to include and exclude columns. The function will error if you include both parameters.

Author(s)

Michael Hallquist

See Also

extractModelSummaries HTMLSummaryTable LatexSummaryTable

Examples

make me!!!

submitModels 69

submitModels Submit Mplus models to a high-performance cluster scheduler

Description

This function submits a group of Mplus models (.inp files) located within a single directory or
nested within subdirectories.

Usage

submitModels(
target = getwd(),
recursive = FALSE,
filefilter = NULL,
replaceOutfile = "modifiedDate",
Mplus_command = NULL,
quiet = FALSE,
scheduler = "slurm",
sched_args = NULL,
env_variables = NULL,
export_all = FALSE,
cores_per_model = 1L,
memgb_per_model = 8L,
time_per_model = "1:00:00",
pre = NULL,
post = NULL,
batch_outdir = NULL,
job_script_prefix = NULL,
combine_jobs = TRUE,
max_time_per_job = "24:00:00",
combine_memgb_tolerance = 1,
combine_cores_tolerance = 2,
debug = FALSE,
fail_on_error = TRUE

)

Arguments

target a character vector where each element is a directory containing Mplus input files
(.inp) to run OR a single .inp file to be run. Elements may be a full path, relative
path, or a filename within the working directory. Defaults to the current working
directory. Example: “C:/Users/Michael/Mplus Runs”

recursive optional. If TRUE, run all models nested in subdirectories within directory.
Defaults to FALSE. Not relevant if target is a single file.

filefilter a Perl regular expression (PCRE-compatible) specifying particular input files to
be run among those found in target. See regex or http://www.pcre.org/
pcre.txt for details about regular expression syntax.

http://www.pcre.org/pcre.txt
http://www.pcre.org/pcre.txt

70 submitModels

replaceOutfile optional. Currently supports three settings: “always”, which runs all models,
regardless of whether an output file for the model exists; “never”, which does
not run any model that has an existing output file; and “modifiedDate”, which
only runs a model if the modified date for the input file is more recent than the
output file modified date (implying there have been updates to the model).

Mplus_command optional. N.B.: No need to pass this parameter for most users (has intelligent
defaults). Allows the user to specify the name/path of the Mplus executable
to be used for running models. This covers situations where Mplus is not in
the system’s path, or where one wants to test different versions of the Mplus
program.

quiet optional. If FALSE, show status messages in the console.

scheduler Which scheduler to use for job submission. Options are ’qsub’, ’torque’, ’sbatch’,
’slurm’, or ’sh’. The terms ’qsub’ and ’torque’ are aliases (where ’torque’ sub-
mits via the qsub command). Likewise for ’sbatch’ and ’slurm’. The scheduler
’sh’ does not submit to any scheduler at all, but instead executes the command
immediately via sh.

sched_args A character vector of arguments to be included in the scheduling command. On
TORQUE, these will typically begin with ’-l’ such as ’-l wall_time=10:00:00’.
These are added inside the submission script for each model and are shared
across all models. To add model-specific arguments, include ‘! #SBATCH‘ or
‘! #PBS‘ lines inside the individual .inp files

env_variables A named character vector containing environment variables and their values to
be passed to the script at execution time. This is handled by the ’-v’ directive
on TORQUE clusters and by ’–export’ on Slurm clusters. The names of this
vector are the environment variable names and the values of the vector are the
environment variable values to be passed in. If you want to propagate the current
value of an environment variable to the compute node at runtime, use NA as the
value of the element in env_variables. See examples.

export_all Whether to export all environment variables to the compute node at runtime.
Default: FALSE

cores_per_model

How many cpus/cores are requested for each model (can be overriden using ‘!
BATCH‘ directives in .inp files). Default: 1.

memgb_per_model

amount of memory (RAM) requested for each model (in GB). Default: 8.

time_per_model amount of time requested for each model. Default: "1:00:00" (1 hour). If a
number is provided, we will treat this as the number of minutes.

pre user-specified shell commands to include in the job script prior to running Mplus
(e.g., module load commands)

post user-specified shell commands to include in the job script after Mplus runs (e.g.,
execute results wrangling script)

batch_outdir the directory where job scripts should be written
job_script_prefix

the filename prefix for each job script

submitModels 71

combine_jobs if TRUE, submitModels will seek to combine similar models into batches to
reduce the total number of jobs

max_time_per_job

The maximum time (in days-hours:minutes:seconds format) allowed for a com-
bined job

combine_memgb_tolerance

The memory tolerance for combining similar models in GB. Defaults to 1 (i.e.,
models that differ by <= 1 GB can be combined)

combine_cores_tolerance

The cores tolerance for combining similar models in number of cores. Defaults
to 2 (i.e., models that whose core requests differ by <= 2 can be combined)

debug a logical indicating whether to actually submit the jobs (TRUE) or just create
the scripts for inspection (FALSE)

fail_on_error Whether to stop execution of the script (TRUE), or issue a warning (FALSE) if
the job submission fails. Defaults to TRUE.

Details

Note that if ‘fail_on_error‘ is ‘TRUE‘ and submission of one model fails, the submission loop will
stop, rather than submitting further models.

Value

None. Function is used for its side effects (submitting models).

Author(s)

Michael Hallquist

Examples

Not run:
submitModels("C:/Users/Michael/Mplus Runs", recursive=TRUE, showOutput=TRUE,

replaceOutfile="modifiedDate", logFile="MH_RunLog.txt")

End(Not run)
Not run:

submitModels(getwd(), filefilter = "ex8.*", batch_outdir="~/mplus_batch_12")

End(Not run)

72 summary.mplusObject

summary.mplusObject Summarize an mplusObject

Description

This is a method for summarizing an mplusObject.

Usage

S3 method for class 'mplusObject'
summary(object, verbose = FALSE, ...)

Arguments

object An object of class mplusObject

verbose Logical whether to print verbose output. Defaults to FALSE.

... Additional arguments to pass on (not currently used)

Value

NULL Called for its side effect of printing a model summary to the console

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

See Also

Other Mplus-Formatting: coef.mplus.model(), confint.mplus.model(), extract(), print.MplusRstructure()

Examples

Not run:
simple example of a model using builtin data
demonstrates use
test <- mplusObject(

TITLE = "test the MplusAutomation Package;",
MODEL = "
mpg ON wt hp;
wt WITH hp;",

usevariables = c("mpg", "wt", "hp"),
rdata = mtcars)

res <- mplusModeler(test, "mtcars.dat", modelout = "model1.inp", run = 1L)

example of the summary method
summary(res)

example of verbose output

summary.mplus_submission_df 73

summary(res, verbose=TRUE)

remove files
unlink("mtcars.dat")
unlink("model1.inp")
unlink("model1.out")
unlink("Mplus Run Models.log")

End(Not run)

summary.mplus_submission_df

summary function for submission from submitModels

Description

summary function for submission from submitModels

Usage

S3 method for class 'mplus_submission_df'
summary(x, refresh = TRUE, ...)

Arguments

x the mplus_submission_df object to summarize

refresh if TRUE, check the status of jobs for this object before printing

SummaryTable Create a summary table of Mplus model statistics

Description

Creates output (optionally sent to a file) containing a summary table of model fit statistics extracted
using the extractModelSummaries function. By default, the following summary statistics are in-
cluded: Title, LL, Parameters, AIC, AICC, BIC, RMSEA_Estimate, but these are customizable
using the keepCols and dropCols parameters.

74 SummaryTable

Usage

SummaryTable(
modelList,
type = c("none", "screen", "popup", "html", "latex", "markdown"),
filename = "",
keepCols,
dropCols,
sortBy = NULL,
caption = "",
display = FALSE,
...,
include.rownames = FALSE

)

Arguments

modelList A list of models returned from the extractModelSummaries function.

type A character vector indicating the type of output format to be generated. One of:
“none”, “screen”, “popup”, “html”, “latex”, or “markdown”. Screen results in a
simple summary table being sent to the R console.

filename The name of the file to be created. Can be an absolute or relative path. If
filename is a relative path or just the filename, then it is assumed that the file
resides in the working directory getwd(). Example: "Mplus Summary.html".
By default, no filename is given, which results in the output being sent to the
console. Note that currently, filename only has an effect for “html” and “latex”.

keepCols A vector of character strings indicating which columns/variables to display in
the summary. Only columns included in this list will be displayed (all others ex-
cluded). By default, keepCols is: c("Title", "LL", "Parameters", "AIC",
"AICC", "BIC", "RMSEA_Estimate"). Example: c("Title", "LL", "AIC",
"CFI")

dropCols A vector of character strings indicating which columns/variables to omit from
the summary. Any column not included in this list will be displayed. By default,
dropCols is NULL. Example: c("InputInstructions", "TLI")

sortBy optional. Field name (as character string) by which to sort the table. Typically
an information criterion (e.g., "AIC" or "BIC") is used to sort the table. Defaults
to NULL, which does not sort the table.

caption A character string, the caption to be given to the table. Currently only applies to
types “html”, “latex”, and “markdown”.

display optional logical (defaults to FALSE). This parameter specifies whether to display
the table upon creation (TRUE or FALSE).

include.rownames

optional logical whether to include rownames or not.

... additional arguments passed on to specific formatting types.

testBParamCompoundConstraint 75

Value

Invisibly returns the summary table, which can be used if the printing options avaiable are not
sufficient.

Note

You must choose between keepCols and dropCols because it is not sensible to use these together
to include and exclude columns. The function will error if you include both parameters.

Author(s)

Joshua F. Wiley based on code by Michael Hallquist

See Also

extractModelSummaries

Examples

Not run:
m1 <- mplusObject(TITLE = "Reduced",
MODEL = "mpg ON wt;", rdata = mtcars)
m1.fit <- mplusModeler(m1, "mtcars.dat", run = 1L)
m2 <- mplusObject(TITLE = "Full",
MODEL = "mpg ON wt hp qsec;", rdata = mtcars)
m2.fit <- mplusModeler(m2, "mtcars.dat", run = 1L)

SummaryTable(list(m1.fit, m2.fit))
SummaryTable(list(m1.fit, m2.fit), type = "popup")
SummaryTable(list(m1.fit, m2.fit), type = "markdown",
keepCols = c("Title", "Parameters", "LL", "AIC", "CFI", "SRMR"),
caption = "Table of Model Fit Statistics",
split.tables = 200)

remove files
unlink("mtcars.dat")
unlink("mtcars.inp")
unlink("mtcars.out")
unlink("Mplus Run Models.log")
closeAllConnections()

End(Not run)

testBParamCompoundConstraint

Test inequality-constrained hypothesis for two or more parameters
based on iterations of MCMC chains

76 testBParamCompoundConstraint

Description

Tests an inequality-constrained hypothesis (van de Schoot, Hoijtink, Hallquist, & Boelen, in press)
based on draws from the posterior distribution of the model parameters, which provides information
about the proportion of the distribution that is in agreement with a given hypothesis. This function is
used for more complex hypotheses about three or more parameters, whereas testBParamConstraint
tests a simple two-parameter hypothesis.

Usage

testBParamCompoundConstraint(bparams, test)

Arguments

bparams An object containing draws from the posterior distribution (class mplus.model
or mplus.bparameters). Obtained by SAVEDATA:BPARAMETERS in Mplus
and getSavedata_Bparams or readModels in MplusAutomation.

test The R code defining the parameter test of three or more parameters. Example:
"(STAITOT.ON.CG > STAITOT.ON.UCG) & (BDIM.ON.CG > BDIM.ON.UCG)".

Details

This function accepts a bparameters object containing iterations of the MCMC chains (rows) for
each model parameter (columns) and prints out the number and proportion of draws that are con-
sistent with the requested hypothesis test.

The test argument is evaluated directly as R code, with the bparams object attached so that variable
names are available directly in the environment. Because the goal is to evaluate the test for each
draw from the posterior distribution, remember to use vector-based logic operators, not boolean
operators. That is, stick to & or | for joining tests of parameters, rather than && or || since the latter
will return a single TRUE/FALSE, which is irrelevant.

An example test in R logic would be "(STAITOT.ON.CG > STAITOT.ON.UCG) & (BDIM.ON.CG >
BDIM.ON.UCG)".

Value

No value is returned by this function. Instead, two summary tables are printed to the screen con-
taining the number and proportion of draws consistent with the hypothesis.

Author(s)

Michael Hallquist

See Also

testBParamConstraint

testBParamConstraint 77

Examples

Not run:
#using bparameters directly
btest <- getSavedata_Bparams("model vb1_simpel_b.out")
testBParametersCompoundConstraint(btest,
"(STDYX_STAITOT.ON.CG > STDYX_STAITOT.ON.UCG) & (STDYX_BDIM.ON.CG > STDYX_BDIM.ON.UCG)")

#or using readModels
btest <- readModels("model vb1_simpel_b.out")
testBParametersCompoundConstraint(btest,
"(STDYX_STAITOT.ON.CG > STDYX_STAITOT.ON.UCG) & (STDYX_BDIM.ON.CG > STDYX_BDIM.ON.UCG)")

End(Not run)

testBParamConstraint Test inequality-constrained hypothesis for two parameters based on
iterations of MCMC chains

Description

Tests a simple inequality-constrained hypothesis (van de Schoot, Hoijtink, Hallquist, & Boelen,
in press) based on draws from the posterior distribution of the model parameters, which provides
information about the proportion of the distribution that is in agreement with a given hypothesis.
This function is used for simple hypothesis for two parameters, whereas testBParamCompound-
Constraint gives full access to multiple parameters and R’s logic syntax. This function accepts a
bparameters object containing iterations of the MCMC chains (rows) for each model parameter
(columns) and prints out the number and proportion of draws that are consistent with the requested
hypothesis test. The coef1, operator, and coef2 arguments are appended in sequence, so that
the hypothesis test is constructed from left-to-right. e.g., testBParamConstraint(bparamsDF,
"MGM.TRT1", ">", "MGM.EX2").

Usage

testBParamConstraint(bparams, coef1, operator, coef2)

Arguments

bparams An object containing draws from the posterior distribution (class mplus.model
or mplus.bparameters). Obtained by SAVEDATA:BPARAMETERS in Mplus
and getSavedata_Bparams or readModels in MplusAutomation.

coef1 The name of the first parameter to be compared. Example: "MGM.TRT1"

operator A logical operator to compare the two parameters. Should be one of >=, >, <,
or <=. Example: ">="

coef2 The name of the first parameter to be compared. Example: "MGM.EX2"

78 trainLGMM

Value

No value is returned by this function. Instead, two summary tables are printed to the screen con-
taining the number and proportion of draws consistent with the hypothesis.

Author(s)

Michael Hallquist

See Also

testBParamCompoundConstraint

Examples

Not run:
#using bparameters directly
btest <- getSavedata_Bparams("model vb1_simpel_b.out"))
testBParametersConstraint(btest, "STDYX_STAITOT.ON.CG", ">", "STDYX_STAITOT.ON.UCG")

#or using readModels
btest <- readModels("model vb1_simpel_b.out"))
testBParametersConstraint(btest, "STDYX_STAITOT.ON.CG", ">", "STDYX_STAITOT.ON.UCG")

End(Not run)

trainLGMM Train a variety of latent growth mixture model

Description

This function iterates through a grid of values to train LGMMs, optionally using a local or remote
cluster.

Usage

trainLGMM(
data,
idvar,
assessmentvar,
newdata = FALSE,
tuneGrid,
cl,
ncores = 1L

)

trainLGMM 79

Arguments

data A data frame or data table in long format (i.e., multiple rows per ID).

idvar A character string of the variable name in the dataset that is the ID variable.

assessmentvar A character string of the variable name in the dataset that indicates the particular
assessment point for each timepoint.

newdata A data frame of new values to use for generating predicted trajectories by class
or FALSE if no predictions to be made (the default).

tuneGrid A dataframe or list. It should have names for the needed arguments for long2LGMM().

cl Optional. An existing cluster to be used to estimate models. Can be a local or
remote cluster. In either case it needs MplusAUtomation and Mplus available.

ncores If a cluster is not passed to cl, specify the number of cores to use to create a
local cluster. Must be an integer. Defaults to 1L.

Examples

Not run:
This example is not run by default because even with very limitted number of
random starts and iterations, it takes quite a few minutes
setwd(tempdir())

Simulate Some Data from 3 classes
library(MASS)
set.seed(1234)
allcoef <- rbind(

cbind(1, mvrnorm(n = 200,
mu = c(0, 2, 0),
Sigma = diag(c(.2, .1, .01)),
empirical = TRUE)),

cbind(2, mvrnorm(n = 200,
mu = c(-3.35, 2, 2),
Sigma = diag(c(.2, .1, .1)),
empirical = TRUE)),

cbind(3, mvrnorm(n = 200,
mu = c(3.35, 2, -2),
Sigma = diag(c(.2, .1, .1)),
empirical = TRUE)))

allcoef <- as.data.frame(allcoef)
names(allcoef) <- c("Class", "I", "L", "Q")
allcoef$ID <- 1:nrow(allcoef)
d <- do.call(rbind, lapply(1:nrow(allcoef), function(i) {

out <- data.frame(
ID = allcoef$ID[i],
Class = allcoef$Class[i],
Assess = 1:11,
x = sort(runif(n = 11, min = -2, max = 2)))

out$y <- rnorm(11,
mean = allcoef$I[i] + allcoef$L[i] * out$x + allcoef$Q[i] * out$x^2,
sd = .1)

return(out)

80 trainLGMM

}))

create splines
library(splines)
time_splines <- ns(d$x, df = 3, Boundary.knots = quantile(d$x, probs = c(.02, .98)))
d$t1 <- time_splines[, 1]
d$t2 <- time_splines[, 2]
d$t3 <- time_splines[, 3]
d$xq <- d$x^2

create new data to be used for predictions
nd <- data.frame(ID = 1,

x = seq(from = -2, to = 2, by = .1))
nd.splines <- with(attributes(time_splines),

ns(nd$x, df = degree, knots = knots,
Boundary.knots = Boundary.knots))

nd$t1 <- nd.splines[, 1]
nd$t2 <- nd.splines[, 2]
nd$t3 <- nd.splines[, 3]
nd$xq <- nd$x^2

create a tuning grid of models to try
all possible combinations are created of different time trends
different covariance structures of the random effects
and different number of classes
tuneGrid <- expand.grid(

dv = "y",
timevars = list(c("t1", "t2", "t3"), "x", c("x", "xq")),
starts = "2 1",
cov = c("independent", "zero"),
k = c(1L, 3L),
processors = 1L, run = TRUE,
misstrick = TRUE, stringsAsFactors = FALSE)

tuneGrid$title <- paste0(
c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
"_",
sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)),
"_",
tuneGrid$k)

tuneGrid$base <- paste0(
c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
"_",
sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)))

example using long2LGMM to fit one model at a time
mres <- long2LGMM(

data = d,
idvar = "ID",
assessmentvar = "Assess",
dv = tuneGrid$dv[1],
timevars = tuneGrid$timevars[[1]],
misstrick = tuneGrid$misstrick[1],
k = tuneGrid$k[1],

trainLGMM 81

title = paste0(tuneGrid$title[1], tuneGrid$k[1]),
base = tuneGrid$base[1],
run = tuneGrid$run[1],
processors = tuneGrid$processors[1],
starts = tuneGrid$starts[1],
newdata = nd,
cov = tuneGrid$cov[1])

Example using trainLGMM to fit a whole set of models
can be distributed across a local or remote cluster
Defaults to creating a local cluster, but can also pass an
existing cluster
AllRes <- trainLGMM(

data = d,
idvar = "ID",
assessmentvar = "Assess",
newdata = nd,
tuneGrid = tuneGrid,
ncores = 2L)

tuneGridRes <- as.data.frame(
cbind(tuneGrid,

do.call(rbind, lapply(AllRes, function(x) {
if (is.null(x$Model$results$summaries)) {

NA
} else {

out <- x$Model$results$summaries
deal with missing summary information for k = 1
if (is.null(out$Entropy)) {

out$Entropy <- 1
}
if (is.null(out$NCategoricalLatentVars)) {

out$NCategoricalLatentVars <- 0
}
out[, sort(names(out)), drop = FALSE]

}
}))))

tuneGridRes$Type <- gsub("([a-z]+)_.*$", "\\1", tuneGridRes$title)

tuneGridRes$MinClass <- sapply(AllRes, function(x) {
n <- x$Model$results$class_counts$mostLikely$count
if(is.null(n)) {
length(unique(d$ID))

} else {
min(n, na.rm = TRUE)

}
})

when trying many models, some may not converge
subset to omit any missing AICC and look only at those with some
minimum number of participants per class,

82 update.mplusObject

for demonstration only arbitrarily set at 30
subset(tuneGridRes, !is.na(AICC) & MinClass >= 30,

select = c(title, aBIC, AICC, Entropy, MinClass, LL))

reshape data into long form which can make a very nice plot using ggplot2
tuneGridResL <- reshape(
subset(tuneGridRes, select = c(Type, cov, k, Parameters, aBIC, AICC, AIC, BIC, Entropy)),
varying = c("Parameters", "aBIC", "AICC", "AIC", "BIC", "Entropy"),
v.names = "value",
times = c("Parameters", "aBIC", "AICC", "AIC", "BIC", "Entropy"),
timevar = "variable",
idvar = c("Type", "cov", "k"),
direction = "long")

tuneGridResL$cov <- factor(tuneGridResL$cov, levels = c("zero", "independent"))

uncomment to run
library(ggplot2)
ggplot(tuneGridResL, aes(k, value, colour = Type, shape = Type)) +
geom_point() +
facet_grid(variable~cov, scales = "free")

nice plot of the average trajectories in each class
these are possible as trainLGMM exports predicted values for the
new data fed in
uncomment to run
ggplot(AllRes[[which(tuneGridRes$title=="quad_ind_3")]]$predictions, aes(x)) +
geom_line(aes(y = y_1), colour = "black", size = 2) +
geom_line(aes(y = y_2), colour = "red", size = 2) +
geom_line(aes(y = y_3), colour = "blue", size = 2)

End(Not run)

update.mplusObject Update an Mplus model object

Description

This is a method for updating an Mplus model object. It takes an Mplus model object as the first
argument, and then optionally any sections to update. There are two ways to update a section using
a formula interface. ~ "new stuff" will replace a given section with the new text. Alternately, you
can add additional text using ~ + "additional stuff". Combined these let you replace or add to a
section.

Usage

S3 method for class 'mplusObject'
update(object, quiet = TRUE, ...)

update.mplusObject 83

Arguments

object An object of class mplusObject

quiet optional. If TRUE, show status messages in the console.

... Additional arguments to pass on

Value

An (updated) Mplus model object

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

example1 <- mplusObject(MODEL = "mpg ON wt;",
usevariables = c("mpg", "hp"), rdata = mtcars)

x <- ~ "ESTIMATOR = ML;"
str(update(example1, rdata = iris))
str(update(example1, ANALYSIS = x))
str(update(example1, MODEL = ~ "wt ON hp;"))
str(update(example1, MODEL = ~ . + "wt ON hp;"))
str(update(example1, ANALYSIS = x, MODEL = ~ . + "wt ON hp;"))

check that use variables can be updated & overridden
str(update(example1, usevariables = c("mpg", "hp", "cyl")))

test to make sure . in Mplus code does not cause problems
str(update(example1, ANALYSIS = x, MODEL = ~ . + "wt ON hp*.5;"))
rm(example1, x)

Index

∗ Mplus-Formatting
coef.mplus.model, 6
confint.mplus.model, 10
extract, 16
print.MplusRstructure, 60
summary.mplusObject, 72

∗ datasets
lcademo, 23

∗ interface
coef.mplus.model, 6
compareModels, 8
confint.mplus.model, 10
createModels, 14
createSyntax, 14
extract, 16
HTMLSummaryTable, 20
LatexSummaryTable, 22
lookupTech1Parameter, 27
mplus.traceplot, 29
mplusAvailable, 32
mplusObject, 41
mplusRcov, 44
parseCatOutput, 49
plot.mplusObject, 52
prepareMplusData, 56
print.MplusRstructure, 60
readModels, 61
runModels, 64
runModels_Interactive, 65
separateHyphens, 67
showSummaryTable, 67
summary.mplusObject, 72
SummaryTable, 73
testBParamCompoundConstraint, 75
testBParamConstraint, 77
update.mplusObject, 82

∗ mixture
createMixtures, 11
mixtureSummaryTable, 28

plotMixtureDensities, 53
plotMixtures, 54

∗ models
createMixtures, 11
plotMixtureDensities, 53

∗ mplus
createMixtures, 11
mixtureSummaryTable, 28
plotMixtureDensities, 53
plotMixtures, 54

∗ package
MplusAutomation, 30

∗ plot
plotMixtures, 54

∗ utilities
cd, 4

∗ utils
paramExtract, 48
parseMplus, 50

.mplusMultinomial, 3

cd, 4
checkSubmission, 5
coef.mplus.model, 6, 11, 17, 61, 72
coef.mplusObject (coef.mplus.model), 6
compareModels, 8, 31
confint.mplus.model, 7, 10, 17, 61, 72
confint.mplusObject

(confint.mplus.model), 10
createMixtures, 11
createModels, 14, 31
createSyntax, 14

detectMplus, 15

extract, 7, 11, 16, 61, 72
extract,mplus.model-method (extract), 16
extract,mplusObject-method (extract), 16
extract.mplus.model (extract), 16
extract.mplusObject (extract), 16

84

INDEX 85

extractModelSummaries, 21, 23, 31, 68, 75

get_bparameters (get_results), 18
get_class_counts (get_results), 18
get_covariance_coverage (get_results),

18
get_data_summary (get_results), 18
get_fac_score_stats (get_results), 18
get_gh5 (get_results), 18
get_indirect (get_results), 18
get_input (get_results), 18
get_invariance_testing (get_results), 18
get_lcCondMeans (get_results), 18
get_mod_indices (get_results), 18
get_parameters (get_results), 18
get_residuals (get_results), 18
get_results, 18
get_sampstat (get_results), 18
get_savedata (get_results), 18
get_summaries (get_results), 18
get_tech1 (get_results), 18
get_tech10 (get_results), 18
get_tech12 (get_results), 18
get_tech15 (get_results), 18
get_tech3 (get_results), 18
get_tech4 (get_results), 18
get_tech7 (get_results), 18
get_tech8 (get_results), 18
get_tech9 (get_results), 18
get_warn_err (get_results), 18
getSavedata_Bparams, 76, 77

HTMLSummaryTable, 20, 23, 31, 68

LatexSummaryTable, 21, 22, 31, 68
lcademo, 23
long2LGMM, 24
lookupTech1Parameter, 27

mixtureSummaryTable, 28
mplus.traceplot, 29
MplusAutomation, 30
mplusAvailable, 32
mplusGLM, 33
mplusModel, 34
mplusModeler, 13, 15, 17, 35, 42, 44, 51
mplusObject, 12, 13, 41
mplusRcov, 44

paramExtract, 48

parseCatOutput, 49
parseMplus, 35, 50
parseMplusSyntax, 51
plot.mcmc, 30
plot.mplusObject, 52
plotMixtureDensities, 53
plotMixtures, 54
prepareMplusData, 15, 31, 36, 56
print.MplusRstructure, 7, 11, 17, 60, 72

readModels, 7, 11, 17, 27, 31, 36, 37, 48, 49,
61, 76, 77

runModels, 31, 32, 36, 37, 64, 66
runModels_Interactive, 31, 65, 65

sapply, 19
separateHyphens, 67
showSummaryTable, 21, 23, 31, 67
submitModels, 69
summary.mplus_submission_df, 73
summary.mplusObject, 7, 11, 17, 61, 72
SummaryTable, 28, 29, 73
Sweave, 23

testBParamCompoundConstraint, 75, 78
testBParamConstraint, 76, 77
trainLGMM, 78

update.mplusObject, 82

	.mplusMultinomial
	cd
	checkSubmission
	coef.mplus.model
	compareModels
	confint.mplus.model
	createMixtures
	createModels
	createSyntax
	detectMplus
	extract
	get_results
	HTMLSummaryTable
	LatexSummaryTable
	lcademo
	long2LGMM
	lookupTech1Parameter
	mixtureSummaryTable
	mplus.traceplot
	MplusAutomation
	mplusAvailable
	mplusGLM
	mplusModel
	mplusModeler
	mplusObject
	mplusRcov
	paramExtract
	parseCatOutput
	parseMplus
	parseMplusSyntax
	plot.mplusObject
	plotMixtureDensities
	plotMixtures
	prepareMplusData
	print.MplusRstructure
	readModels
	runModels
	runModels_Interactive
	separateHyphens
	showSummaryTable
	submitModels
	summary.mplusObject
	summary.mplus_submission_df
	SummaryTable
	testBParamCompoundConstraint
	testBParamConstraint
	trainLGMM
	update.mplusObject
	Index

